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Multifold topological semimetals host fermions with opposite chiralities at topological
band crossings!' . Chiral fermionic transportin topological systems often relies on
high magnetic fields or magnetic dopants to suppress trivial transport and create an
imbalance in occupancy of opposite Chern-number states**. Here we use the quantum

geometry®’ of topological bands to filter fermions by chirality into distinct Chern-
number-polarized states. This allows for the real-space separation of currents with
opposite fermionic chiralities, which we have demonstrated by observing their
quantum interference in the absence of any magnetic field. Devices fabricated from
single-crystal PdGain a three-arm geometry exhibit quantum-geometry-induced
anomalous velocities®® of chiral fermions, thereby exhibiting a nonlinear Hall effect.
Theresultant transverse chiral currents with opposite anomalous velocities are
thereby spatially separated into the outer arms of the device. These chiral currentsin
opposing Chern number states also carry orbital magnetizations with opposite signs.
The mesoscopic phase coherence of these chiral currents facilitated their quantum
interference'®in aMach-Zehnder interferometer. Our findings establish a chiral
fermionic valve that exhibits three key properties: spatially separates chiral fermions
into Chern-number polarized states by using their quantum geometry, enables tuneable
current-induced magnetization and provides a platform for controllable quantum
interference of chiral quasiparticles using an electric current and magnetic field.

The chiral fermionsinthe topological states facilitates efficient spinand
orbital angular momentum transport and play a crucial partin quantum
electronics devices such as interferometers*'°**,. Meanwhile, chiral
topological states in proximity with superconductors or magnets can
lead to applicationsin quantum computing®”and cryogenic memories'.
Thus, achieving mesoscopic coherent transport of chiral fermions in
these topological states is crucial to realizing low-power topological
electronics” ™, However, access to these states in a typical topological
metalis oftenlimited because of the concurrent transport of electrons
in trivial states?®. The separation of the contributions of topological
states from trivial states in their transport response is important**,
Moreover, thelinear electrical response of chiral fermions are innately
zero because of the averaging of contributions from topological states
with opposite Chern number under time-reversal symmetry (TRS)*.
Animbalance between right-chiral and left-chiral fermions is neces-
sary to see their transport effects in a nonmagnetic material®. Thus,
minimizing the transport contribution of trivial states while creating
animbalance in the occupancy of right-chiral and left-chiral fermi-
onsis essential to the study of chiral fermions in topological systems.
A typical strategy is through the application of large magnetic fields
or by magnetic doping, which makes their practical application dif-
ficult. However, a strategy that rather filters the charge transport
in the topological states from the trivial states would enable their
study in the absence of any magnetic field. It would also allow for the

charge currents of opposite fermionic chirality to exist in the same
device.

Anon-trivial quantum geometry distinguishes the topological bands
from trivial bands. The quantum geometric tensor (or Fubini-Study
metric), T=g - %F, consists of two parts, in which the real part g is the
band normalized quantum metric tensor, and the imaginary partFis
the Berry curvature tensor, related to the Berry curvature pseudovec-
torQasQ,= %eaﬁyFﬂy (refs. 6,7,24). The use of quantum-geometry-
induced phenomenon to study chiral fermionic transport in topo-
logical matter holds practical significance for two key reasons. First,
itallows for the control of chiral fermionic degrees of freedom without
an external magnetic field. Second, it enables access to the transport
intopologically protected states, even when the transport coexists in
the trivial states. Multifold topological semimetals (or chiral topo-
logical semimetals) are a unique class of materials in which their crys-
tallographic chirality gives rise to their electronic chirality in
reciprocal space*?. The dynamics of electrons near topological band
crossings are those of massless relativistic fermions with a particular
chirality that is reflected in its Chern number**?, A non-zero Chern
number is closely linked with the presence of chiral topological states,
for example in quantum Hall effect and Chern insulator>'2, Here we
discuss PdGa, that has aP2,3 space group, and whose crystallographic
chirality impliesthe absence of any inversion centre and mirror planes.
Figure 1a shows a schematic of the crystal structure of PdGa and its
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Fig.1|Multifold topological semimetal PdGa. a, Top, illustrations of the
crystalstructure of PdGa along the [100] and [111] directions. The schematics
alsoshow the left-chiral 2, and right-chiral 3, screw axes of Pd atoms along these
directions. Bottom, schematic of the geometry of the Fermi pockets at the
I'and R points that have Chern numbers of C; = -4 and C, = 4, respectively.

b, False-coloured SEM image of the microstructured device of PdGa made
using focused-ion beam techniques, showing the three-arm geometry.

topological Fermi pockets ', at the I’ point and Ry, at the R point?%,
The signs of the Chern numbers of these pockets are related to the
geometric chiralities of the screw axes along [100] and [111], respec-
tively, inagivenenantiomer. The multifold topological band crossings
atthel and R points with opposite Chern numbers host chiral fermions
with spin 3/2 (+ spin 1/2) and spin 1, respectively' >, These band cross-
ings act as the source and sink of orbital angular momentum (OAM)
monopoles with large Chern numbers of +4 (refs. 28,29). The OAM
arises from the topological features captured by the Berry curvature
and the spatial angular distribution of electronic states encodedin the
quantum metric tensor*%>,

Inthis work, we demonstrate a strategy to filter the charge transport
intopological bands fromtrivial bands using the nonlinear Hall effect
(NLH). The three-armed device geometry shownin Fig.1b was prepared
using focused-ion beam milling techniques®** and designed to stimu-
late chiral fermionic filtration. Fermions with opposite chiralities are
collected inthe two outer arms of the device because of their opposite
anomalous velocity, as shown in Fig. 1c. The spatial separation of fer-
mions based ontheir chirality resultsin the preferential occupation of
topological states with opposite Chern numbersin the differentarms
in this non-equilibrium steady state. The transport of chiral fermions
in preferentially occupied topological states furthermore induces an
orbital magnetization®. We observe the quantum interference of
these chiral currents in the outer arms by Mach-Zehnder interferom-
etry, which, thereby, proves their long-range phase coherence. Based
on these findings, we demonstrate the working of a chiral fermionic
value in which the coherent flow of chiral fermionic current can be
controlled using the quantum geometry of the topological bands.

Chiral fermionic separation by the NHL effect

Quantum transportintopological matterisinfluenced by the quantum
geometry of the electronic bands. Nonlinear responses can thereby
be used to probe the quantum geometry in transport measure-
ments®**¢, The quantum geometrical curvature of electronic bands
cangenerate transverse currents because of the contribution froman
anomalous velocity”. Under TRS, the anomalous velocity contribution
is given by, v,=-e£xQ, where £ is the applied electric field. A
non-equilibrium Berry curvatureis generated inasystem with non-zero
g with an applied electric field along certain crystallographic direc-
tions®. This electric-field-induced Berry curvature Q, is given by,
Q. =V, x(GE), where G is the Berry connection polarization tensor,
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¢, The schematic demonstrates the filtration of the charge transportin the
topological states based on their non-trivial quantum geometry. The field-
induced OAM AQ' carried by fermionsin the topological bands at I give them
ananomalous velocity v\ towards the right arm of the device, and OAM AQ?
carried by fermionsin the topological bands at R give them an anomalous
velocity vR towards the left arm of the device. Scale bar, 10 pm (b).

related to the g using theband energy derivative G = —eg—i (refs. 8,9,35).
Here we use v, as our tool for achieving charge transport filtration
between the topological and trivial states. This takes place only for
states with anet geometrical curvature AQ,. We denote AQ, as the OAM
dipole that arises due to the field-induced quantum geometry of the
topological bands. Figure 1c shows this scheme in which fermions in
topological states at I';; and Rgp gain an additional transverse velocity
due to the anomalous velocity induced by AQ" and AQR, respectively.
Thesign of the projection of AQT and AQR along the y-axis depends on
the Chernnumbers of I, and Ry, The AQ! projection along the positive
y-axis scatters fermions in ', towards the negative x-axis and the AQR
projection along the negative y-axis scatters fermions in R, towards
the positive x-axis. Therefore, at the junction of athree-arm device, as
showninFig. 1c, fermions in the topological state at 'y, preferentially
scatter into the right arm of the device and those in the topological
state at Ry scatter into the left arm of the device. Meanwhile, the elec-
trons in the trivial states, which lack Q, scatter preferentially into the
middle arm of the device (at cryogenic temperatures when scattering
events are reduced).

The transverse velocity due to AQ® results in the generation of a
third-order NLH response’. The transverse current calculated using
the semiclassical Boltzmann equation is given by (Methods)

I)E'R«L 0V, x (G Re,)) g2 0
where &, is the applied electric field along z. The quantum geometric
entity G"R acts as a controllable knob to filter the chiral fermions,
because its value for the electronic states at ', and R, differ depend-
ing on the direction of £, (Methods). Setting £, = £, (sinwt, the pro-
duced nonlinear transverse current can be writtenas asum of first-order
and third-order responses as I®=/"R+[}:R (using the identity
sin‘wt = %sinwt+ %sin(3a)t+ 1)). Their transverse voltage responses
were measured under an applied longitudinal current /, along the z,
aligned with the principal axis of the PdGa crystal to minimize trans-
verse Ohmic contributions.

Several devices were fabricated out of PdGa crystal to investigate
the relative contributions from AQ' and AQ® in the third-order NLH
response. The crystallographic orientation was carefully chosen such
that the transverse transport contribution from AQ" and AQ are of a
similar magnitude. Inatypical device, the currentis passed along [100]
(z-axis), and the NLH currents are collected along [011] (x-axis) (Fig. 1b).
The method of synthesizing the PdGa crystals is given in ref. 38.
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Fig.2|Filtering chiral fermions fromtrivial charge using the NLH effect.

a, Schematic oftheelectrical configuration for measurement of the currents
I}, IRentering the leftarm of the device. (i) and (ii) show the dependence of the
third-order V;,, and first-order V, /I ,responses on the applied current/,at 3.5 K.
b, Schematic showing the electrical configuration for measurement of the

Figure 2a,b shows the dependence of the third-order NLH response
V;,andthelinearresponse V,/1,in the leftand right arms of the device,
respectively, at 3.5K, as a function of the magnitude of the applied
current. Note that the schematics shownin the figures show the electri-
cal connections made to measure these responses. As shown in
Fig. 2a(i) and Fig. 2b(i), the third-order response V,, starts to appear
afterathreshold currentof about 55 pAisreached. The opposite signs
of V,, for these two cases suggests their origin is due to AQ” and AQR
with opposite signs of g (Methods). Note that the first-order response,
showninFig.2a(ii) and Fig. 2b(ii), remains almost constant up to 55 pA.
However, a transition occurs near 55 pA, after which the first-order
response starts toincrease quadratically. The simultaneous appearance
ofthird-order responses and first-order transition near 55 pA suggests
that their originisthe NLH effect expected fromequation (1). Notably,
the first-order transition was not observed in d.c. current-voltage
characteristics or dV-d/measurements, where the resistance remains
constantwith the current. It further corroborates that the origin of the
first-order transition is due to the NLH-induced currents. These results
indicate that the nonlinear current responses /), I}, due to AQ" are
produced in the right arm of the device and responses I}, I}, due to
AQRare produced in the left arm of the device.

Quantum metricresponse by afield-induced OAM

The appearance of a NLH response above a certain current threshold
suggests a current-dependentg. This was explored from measurements
ofthe second-order responses. Figure 3a,b shows that the V/,, response
starts to predominantly appear above about |55| pA, for current flow-
ing into both the left and right arms, respectively. The V,, signal
emerges simultaneously with the NLH-induced current responses
showninFig.2, suggesting alink between them. Notably, Fig. 3a,balso
shows the sign reversal of V,,, for the NLH-induced current due to AQY
and AQR. Recent studies have linked the occurrence of V,, due to a
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currents I3, I} entering the right arm of the device. (i) and (ii) show the

dependenceof V;,and V, /I, responses with respectto/,at3.5 K. The measured
V,,isthe quadrature component (Y) relative to the reference signal. Although
V,and/,were plotted by calculating the net magnitude of the signal (that s,

X%+ Y2, whereXis in-phase component).

quantummetric inasystem that maintains 77 symmetry while simul-
taneously breaking Pand 7 (refs. 35,39). Similar symmetry arguments
canbemade be for AQT?, which actslike an orbital analogue of spinin
atopological antiferromagnet*°. Thus, the observed V,, responses for
AQ' and AQ® show the presence of a non-zero g in our system after
the current threshold. Meanwhile, the sign reversal suggests that the
gof ', and R have opposite signs. Therefore, as per equation (1), the
non-zero ggenerates NLH-induced transverse currentsin the right and
left arms of the device. These findings further corroborate the role of
AQ" and AQRin the charge separation of fermions in topological states.
Furthermore, we have confirmed that the observed NLH responses are
not attributable to trivial states, despite the potential coexistence of
trivial-state mechanisms with quantum geometric effects (Methods).

Chiral fermionic current carries orbital magnetization

The chiral fermions scattered transversally due to AQ" into the right
armand AQ® into the left arm of the device occupy topological states
at [, and R;,, respectively, which, thereby, preserves their chirality*.
Thus, the transverse current generated by AQTand AQRis preferentially
carried by topological states at I'; and R, respectively. The resulted
preferential scattering would create an imbalance in the occupation
of chiral fermionsin the topological statesin theleft and right arms, as
shownschematically in Fig. 4a. This charge transport by chiral fermions
inChern-number-polarized-topological statesis termed as chiral cur-
rent. The occupationalimbalance of these topological states allows for
chiral currents to carry a finite orbital magnetization (m"®) derived
from AQE'R (ref.21). The m"R carried by the chiral current follows the
symmetry of the preferentially occupied Fermi pocket. The chiral cur-
rents for different applied magnetic field (B) orientations were studied
toreveal their underlying symmetry. The modulationin the density of
states by the term B. Q' Rdirectly influences the chiral currents*. Hence,
the field orientation 8-dependent modulation of the chiral current
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Fig.3|Quantum metric due to electric-field-induced OAM. a,b, Dependence
ofsecond-order response V,,on the applied current/, for current going into
theleft (a) and right (b) arms. The electrical connections foraand b are the

reveals the underlying symmetry of AQ"R, This was measured in the
leftand right arms using electrical contacts along these arms, as shown
schematicallyinFig.4b,c. Themagnetic field was rotated in the xy plane,
where 8= 0° corresponds to the field oriented along y.

The 6-dependent third-order and first-order responses for the left
armareshowninFig.4band compared with the same responses for the
right arm in Fig. 4c. Highly distinctive responses are found for the two
armsreflecting the distinctive symmetries of the respective Fermipock-
ets. Ry hasathree-fold symmetry, whereas I';, has afour-fold symmetry
(Fig. 4a). For the left arm, the inherent three-fold symmetry of Ry, is
broken by GR&,, which gives rise to the observed modulations around
60° and 240°. These results indicate that the topological states at Ry,
preferentially carry the chiral current in the left arm. Whereas, for the
right arm, Fig. 4c(i),(ii) rather show modulations of V,,and V,, around
90° and 270°, respectively, that is, a two-fold symmetry. These
6-dependent modulations follow the symmetry of AQL in which the

same asthose usedinFig.2a,b. The measured V,, is thein-phase component of

thelock-insignal.

four-fold symmetry of I isbroken by G' &,. Thus, the topological bands
at I, preferentially carry the chiral current in the right arm. Thus, we
conclude that the chiral currents in the left and right arms result from
their preferential occupancy in topological states with opposite Chern
numbers. Notably, the signs of the relative change in magnitudes of both
V,and V;,are of opposite signintheleftand right arms, respectively, as
can be seen in Fig. 4b,c. This shows that the orbital magnetizations m"
and m® have opposite polarities. These results show the two key charac-
teristics of the chiral currentsinthe arms of the device: they preferentially
occupy Chern-number-polarized-topological states with opposite Chern
numbers, and they carry orbital magnetizations with opposite polarities.

Quantum interference of chiral current
The observed nonlinear response in our mesoscopic devices is an
indicator of the long-range phase coherence of the chiral currents.
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showing the origin of the chiral fermionic current due to the preferential

b,c, Magnetic field orientation 8 dependence of variation of first-order and
third-order electrical responses normalized with respect to the responses
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Fig. 4| Chiral fermionic current carries orbital magnetization. a, Schematic

occupancy of topologicalbands atI'and Rin theright and left arms, respectively.

60°
0 0
atf=0°,intheleftandrightarms, respectively. The magneticfieldisrotatedin
thexyplane, where 6= 0° corresponds to the y-axis. The data forb(i) and c (i)
and (i) were measured at 2K withanapplied current of 400 pA in a magnetic
field of 2 T. Although the data for b (ii) were obtained at 50 mK at an applied

current of 70 pA and magnetic field of 0.5 T.
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Fig. 5| Quantum interference of chiral current. a, False-coloured SEM image
ofthe MZI made from the PdGa crystal. The applied electric field is along[011],
and NLH-induced current were collected along [100]. b, Oscillationsin V;, with
applied currentat 30 mKin zero external magnetic field. The current was swept
inbothdirectionstowards the positive and negative polarities. ¢, Oscillations

To study this further, we prepared a Mach-Zehnder interferometer
(MZI) device, as shown in Fig. 5a, that has a similar geometry to the
device studied earlier but without a middle arm. The chiral currents
induced by the NLH effectin the left and right arms remain the samein
the MZI. However, the first-order Ohmic current will coexist with the
first-order chiral current in both arms, whereas the third-order chiral
currents show similar characteristics as before. The dependence of
V,, measured across the MZl on the applied currentat 30 mKis shown
in Fig. 5b. Clear oscillations in V;, are found over the entire range of
currentapplied. Moreover, the oscillations overlap for increasing and
decreasing current.

The chiral currents 3, and I}, acquire a phase due to the current-
induced orbital magnetizations m" and m® in the right and left arms,
respectively. The phase acquired by the chiral currents have different
signs because m' and m® have opposite polarities. Meanwhile, the
absolute phase difference acquired by the chiral current varies with
the applied current, because m" and m® are dependent on current.
Thus, the phase difference carried by the chiral current resultsin V;,
oscillating with the applied current with a well-defined period (Meth-
ods). The current-oscillation period A/ = 6 pA corresponds to achange
inthe flux linkage by a magnetic flux quantum ¢,. We can calculate an
effective current-to-flux conversion coefficient (or effective inductance
L) of theinterferometer using therelations L. = ¢,/Al = 0.68 nH. The
quantum interference of the chiral currents passing through the two
macroscopic arms without any applied magnetic field is possible only
if, first, chiral currents of opposite chiralities exist in the left and right
arms, and, second, the chiral currents have along-range phase coher-
ence of more than 15 pm.

The phase coherence of these chiral fermionic currents was further
exploredinthe presence of an external magnetic field oriented along
y.Asshown in Fig. 5¢c, oscillations of V,, were observed, which were
periodic over magnetic field. We also observed that the phase of the
oscillations was shifted by i, when the magnetic field sweep direction
was reversed, as shown in Fig. 5d. It shows the inductive nature of the
voltage response of the chiral fermionic current (Methods). Assuming

in V;, withapplied magnetic field p,Hat 30 mKwith a current of 20 pA.

d, Dependence of the oscillationsin V;, on the sweep direction of pyHat 30 mK
withacurrent of 20 pA. The magnitude of the field-sweep ratein cand d was
0.83 mT s™*. The magnetic field was applied out of plane along the y-axis. Here
V,,isthein-phase component of the lock-in signal. Scale bar,10 pm (a).

asingle quasi-free electroninterference similar to the Aharonov-Bohm
effect, the B-oscillation period of 15.82 mT gives an interference path
area A; =¢,/1,AH=0.26 um?Z A,is about 400 times smaller than the
actual device geometry. The assumption of single quasi-free electron
behaviour is invalid in our case because the chiral currents consist of
topological quasiparticles with spin1/2, spin1and spin 3/2 having
orbital magnetic momentum in different arms'**. The effective g-factor
oftopological quasiparticlesin systems with strong spin-orbit coupling
canbesignificantly higher than that of a free electron**. Thus, the total
phase accumulated due to enhanced spin-phase contribution® and
conventional Aharonov-Bohm phase may account for the observed
larger oscillation period than conventional free-electron systems.
Further theoretical studies are also needed to understand the decoher-
ence mechanism and quantify the coherence length. The influence of
interacting fermions on quantum interference makes our system an
interesting platform to probe topological quasiparticle excitations.

Conclusions

Innovative ways of controlling and manipulating electronic degrees
of freedom initiates advances in electronics. Semiconductors enable
switchable valves for charge flow in a transistor*’, whereas magnets
enable spinvalves for control of electron spin flow*¢. Our work presents
anew device concept of a chiral fermionic valve, which filters chiral
fermions in topological states from charge transport in trivial states
using their quantum geometry. Furthermore, we show the mesoscopic
phase coherence of the chiral fermions through the quantuminterfer-
ence of their chiral currents. The geometry of the three-arm device
givesriseto the filtration of chiral fermions through the NLH response
driven by an electric-field-induced OAM dipole AQ"R. The AQ" and
AQ® induced currents exist with opposite chiralities in the right and
left arms, respectively. The preferential occupancy of chiral currents
intopological states was confirmed by studying their modulation on
varying the external magnetic field orientation. Our results indicate
that the chiral currents carry orbital magnetizations with opposite
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polarities in the respective arms in Chern-number-polarized topo-
logical states. We show that the generation of orbital magnetization
atthe mesoscale is linked with the long-range coherence of the chiral
currents. The quantum interference of chiral currents in a Mach-
Zehnder interferometer was observed, which confirms their meso-
scopic phase coherence. Based on these findings, we propose a chiral
fermion valve in which fermions in topological bands are separated
based on their chirality using their non-trivial quantum geometry.
Similar to the gate voltage in a transistor, the control knob for the chi-
ral fermionic value is the field-induced OAM (Methods). Chiral fermi-
onicvalve establishes three remarkable abilities: (1) it spatially separates
chiral fermions of opposite chiralities into Chern-number-polarized
topological states; (2) it enables control over both the polarity and
magnitude of current-induced magnetization; and (3) it provides a
versatile platform for studying the quantum interference of chiral
quasiparticles, which can be tuned using electric current and magnetic
field. Our findings apply to the extended family of topological materi-
als with multifold topological crossings, enabling access to chiral
topological states without magnetic fields, doping or electrostatic
gating. The chiral fermionic valve opens up new device applications
for harnessing the chiral degree of freedom in future quantum elec-
tronic devices.
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Methods

Device preparation and electrical measurements

The procedure for device fabrication from PdGa crystal using
Ga-ion-based focused-ion beam technique is as follows®. A lamella
was milled out of the bulk crystal. Then the lamella was transferred
insitutothe TEMgrid for polishing till the desired thicknessis achieved.
The thickness of the lamella used to make devices in our study ranges
from1pumto4 pm. Thenthe lamella was microstructuredinto desired
three-arm geometry onthe TEM grid. Thenthe microstructured lamella
was transferred in situ onto the SiO, substrate with prepatterned Au
contact pads. The electrical contacts between the lamellaand the con-
tact pads were made by sputtering Ti-Au bilayers. Thenthe etching step
was carried out toremove shorting between the electrical contacts. Dur-
ingthe device preparation procedure, special care was taken to reduce
the surface damage. For example, the transport channelin the device
was never scanned with the Gaion beam after the fine polishing step.
However, surface damage of few tens of nanometres may still exists even
after several fine polishing steps. Therefore, a dry etching step using
low-energy Ar ion was performed to further reduce the thickness of
thisamorphous layer before the deposition of Ti-Au to make electrical
contacts. The effect of surface damage on transport measurements was
also studied by purposefully damaging the sample surface withtheion
beam. The comparison of results before and afterion-irradiation were
compared tostudy theinfluence of theamorphous layer on transport.
As also observed in previous studies, the increase of the amorphous
layer thickness did not negatively influence the transport response
through topological states®.

Theelectrical measurements were primarily performedin a Bluefors
LD-400 dilution refrigerator. Meanwhile, experimental data in Fig. 4
with the applied magnetic field of 2 T were measured in a PPMS Dyna-
Cool cryostat. The electrical measurements were carried out using
ZurichInstruments lock-in amplifiers (MFLI) at 7.919 Hzand 13.333 Hz
reference frequencies. The oscillator voltage amplitude was varied
to sweep the applied current through the device (with a buffer resist-
ance in series). The higher harmonic voltage responses from devices
were simultaneously measured with the multi-demodulator option
providedinan MFLI. Each demodulator produces two output signals:
one corresponding to the in-phase component (X) and the other to
the quadrature component (¥) relative to the reference signal. Special
considerations were taken to increase the signal-to-noise ratio, such
as using high-frequency electronic filters and avoiding ground loops.
The magneticfield orientation was swept using a three-axis supercon-
ducting magnet from American Magnetics in a Bluefors refrigerator
(Fig.4b(ii)). An out-of-plane rotator puck was used in the PPMS case, in
whichthe rotation axisis alongthe applied current under the magnetic
field of 2 T (Fig. 4b(i),c). Two different configurations of electrode
contactswith the electrical transport channelinadevice were studied.
Itwas observed that the measured third-order voltage responses were
more prominent when the Ti-Au connected the top surface of the chan-
nel with the electrical contacts. The enhanced third-order response
made it possible to measure the B, dependence of the third-order
response, as shown in Fig. 4b(ii),c(ii).

We have measured 23 devices fabricated in different geometries and
crystal orientations. The five focal crystal orientations are presented
inExtended Data Table 1. We can define four working states of the valve,
depending on the relative magnitude of the chiral currentsin the two
arms. We have quantified the position of the valve using the term

¢=tan 1 3“’ ,asshowninExtended DataFig.1.¢ = 45° represents ‘valve

on’state, when there are equal magnitudes of the NLH currents from
thel and RFermipocketsin the right and left arms, respectively. ¢ = 0°

represents ‘/" on’ state and ¢ =90° represents ‘/f on’ state, where NLH
currentin the right arm is predominantly generated due the I' Fermi

pocket and that in the left arm is predominantly generated due the R
Fermi pocket. Finally, the ‘valve off” state, in which chiral current

generation is suppressed in both arms. We made four devices in a
three-arm geometry near to the ‘valve on’ position. All four devices
show the same experimental features discussed in the paper, namely,
theappearance of distinct NLH responses of similar magnitude in dif-
ferent arms after the current threshold and their distinct symmetries
of first-order responses with magnetic field orientations, as discussed
in Fig. 3b(i),c(i). The absolute value of the nonlinear response varied
withthe dimensions of the device, asgivenin the Extended Data Table 2.
The modulations of the third-order responses discussed with
Fig. 3b(ii),c(ii) were observed in two of these devices. A good signal-
to-noise ratio is needed to measure the nonlinear responses in the
presence of the magnetic field, which we posit is a limiting factor in
our PPMS system. We made three Mach-Zehnder interferometer (MZI)
devices with a ‘valve on’ crystallographic position. All three showed
oscillationsinthird-order response with applied current and magnetic
field, as discussed inFig. 5. The interference visibility § for the MZIwith
$=49.4°and 38.6°were 0.86 + 0, 06 and 0.69 + 0.1, respectively. § was

calculated using the relation M , where Vi"? is the distance
P4y 2V

betweenthe peakand crest ofthe oscillation, whichis calculated using

Vo~ m'“I and V5,8 is the mean offset of the oscillation given by
VITIGX+ V
|2 3e i .Vl and VMinare the minimum and maximum values of the

Vo sngnal We also found that 9 was sensitive to the electronic proper-
ties of the conduction channel sidewall. The value of 9 increased when

the sidewall opposite to the voltage probe is not electrostatically
screened by a presence of another electrode.

Passive and active control of the chiral fermionic valve
The chiral currents generated in the two arms of the device depend on
the magnitudes of AQ"and AQY, as given in equation (1). We can control
therelative projection of AQ"and AQ? along y, using the distinct sym-
metry of the Fermi pockets at the I' and R points. Although the sym-
metry of acrystalis defined by its space group, the symmetry of a Fermi
pocketis determined by the local symmetry of the band structure ata
given k-point¥. Therefore, Fermi pockets at the I'and R points can
locally exhibit distinct mirror-like symmetry M*, which maps
(ky, ky, k;) — (ky, =k, k) (refs. 38,47). The projection of the net OAM
alongthe y-axis is zero if a M* exists along the xz-plane. M* can selec-
tively exist for only one of the Fermi pockets atI' or Rdepending onthe
crystallographic direction of applied current. For example, when the
current passes along[100] (z-axis) and the NLH-induced chiral current
is collected along [010] (x-axis), M* exists along the xz-plane for the
FermipocketatTl, whereasitis broken for the Fermi pocket at R. Thus,
the OAM contribution from topological bands at R would predomi-
nantly exist along the y-axis. Extended Data Fig. 2a(i),(ii) shows the
third-order and second-order responsesin each armin a device fabri-
cated in the mentioned crystallographic directions. We can observe
that the chiral current is primarily generated in the left arm of the
device. Itrepresents the valve in the ‘/* on’ state because the chiral cur-
rentin the left arm preferentially exists in the Fermi pocket at R. The
opposite is true when current is passed along the [100] (z-axis) and
chiral currentis collected along the [011] (x-axis). In this case, the OAM
contribution from the topological bands at I would predominantly
exist. Extended DataFig. 2b(i),(ii) shows the nonlinear responses meas-
ured inadevice made along these crystal directions. In this case, non-
linear currents are predominantly generated in the right arm of the
device, thus representing the valve in the ‘/ on’ position. Finally,
Extended DataFig. 2¢(i),(ii) shows the nonlinear responsesin adevice
in the ‘valve off” states where the generation of chiral current is sup-
pressedinbotharms. In this case, the currentis passed along [011] and
NLH currents were collected along [100]. We call this strategy to con-
trol the valve position ‘passive’ because the valve tunability is linked
with the intrinsic quantum geometry of the topological bands rather
than the experimentally controlled parameter.

We now discuss a proof-of-concept study to achieve active tunability
of the valve. As discussed in the main text, the chiral fermionic current
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exists due to the preferential occupation of the R Fermi pocket in the left
arm and I' Fermi pocket in the right arm of the device. Thus, the mag-
nitude of chiral currents can be controlled by tuning the occupational
imbalance between two Fermipockets. We fabricated amagnetic tunnel
junction (MT)J) with in-plane magnetization on top of individual arms
to locally probe the influence of the magnetic field on chiral currents.
We developed a new fabrication technique to ensure the surface of the
lamellais at a similar height to the substrate. Our strategy prevents
any sudden height changes to ensure smooth deposition of the MTJ.
Extended Data Fig. 3a shows the false-coloured SEM image of the pre-
pared device with MT] electrodes deposited ontop of the left and right
arms. Thelamellawas preparedinthe ‘valve on’ position. In the first set
of experiments, we studied the effects of the magnetization direction
ofthe MTJ on the chiral current of both arms. M, and M, represent direc-
tions when the magnetization of MTJ is perpendicular and parallel to the
current-induced orbital magnetization. Extended Data Fig. 3b(i), (ii) show
the V,,responsesat 77.77 Hzin the left and right arms, respectively, with
M, and M,magnetizations. We can observe from Extended Data Fig. 3b
that the chiral current has the same order of magnitude in the left and
right arms for the M, orientation. However, the nonlinear response of
the right arm switches sign when the MT) magnetization was switched
from M, to M, meanwhile, the V;, response in the left arm remains simi-
lar. Notably, these measurements were performed in the absence of an
external magnetic field. The magnetic field was only used to switch the
magnetization direction of the MTJ. Extended Data Fig. 3b shows a pos-
sible strategy to tune the valve state from ‘valve on’ to ‘/* on’, based on
aMT) magnetization switching mechanism. Inthe second experiment,
we varied the frequency of the applied current to study the interaction
of the chiral current with the magnetization of MT) by measuring the
inductive impedance. Extended Data Fig. 3¢ shows the dependence of
V,, responses at different frequencies of the applied current with the
MT]Jinthe M, configuration. We note from Extended Data Fig. 3b(ii),c(ii)
that theimpedance response of I" is not significantly changed when the
frequency is varied between 77.77 Hz and 47 Hz, whereas the imped-
ance response of /* is reduced by half. From Extended Data Fig. 3c(i),
we see that the magnitude of IRis further reduced by an order of magni-
tude upongoingto the frequency of 23 Hz. Meanwhile, the /" response,
although diminished, has the same sign and the order of magnitude.
Through Extended DataFig. 3c, we show that the valve can be tuned from
‘valve on’ position to /" on’ position by changing the frequency of the
applied current from 77.77 Hzto 23 Hz with the MTJ inthe M, configura-
tion. Through these two experiments, we provide afirst step to pursue
active tunability of the chiral fermionic valve by its integration with an
MT]. However, a deeper understanding of the interaction between the
chiral current and the magnetization dynamics is needed to further
analyse these results. Also, a systematic study is crucial to analyse the
switching reproducibility, fidelity and scalability of the MTJ-integrated
device, which presents animportant direction for future work.

Quantum Interference below threshold current

We have shown the appearance of the V;,, responses after a certain
current thresholdin Fig.2. Meanwhile, Fig. 5b shows clear oscillations
of V;, withapplied current even below the threshold current. As shown
in Extended Data Fig. 4a, we could also observe weak V;, oscillation
response below the threshold current in the three-arm geometry as
well. The subsequent questionis that why does the interference occur
even below the threshold current. We can explain the observed phe-
nomenon using the schematic shown in Extended Data Fig. 4b. We
discussed inthe main text that the fermions in different Fermi pockets
gain a transverse velocity due to the presence of AQ"R. Equation (1)
shows the magnitude of the current going into different arms of the
device from different Fermi pockets is proportional to AQ"R. The
appearance of a nonlinear response after the current threshold sug-
gests that AQ"Ris non-zero only above it. However, @\ -® does exist on
individual topological Fermi pockets even when AQ"R is zero. The

presence of QUR causes the fermions to contribute to the scattering
equally in both arms of the device from both of the Fermi pockets.
Therefore, the chiral current in each of the arms would not be prefer-
entially carried by one of the Fermi pockets. However, the chiral cur-
rents in both of the arms do exist. But, the nonlinear responses of
current with opposite chirality cancel out below the threshold current.
AQ"R becomes non-zero above the threshold current. Thereby, the
fermions fromthe FermipocketsatI'andR, are preferentially scattered
intotherightandleftarms, respectively. This creates an occupational
imbalance in these arms, which leads to the observation of the chiral
current response from the individual Fermi pockets. The presence of
chiral currentinboth scenarios makesit possible to observe the quan-
tuminterference of the chiral current even below the threshold current.

Theoretical considerations for the NLH effect
We use the semi-classical Boltzmann formalism to derive the nonlin-
ear responses. However, it is crucial first to discuss the limitations
of the assumptions taken to derive these transport equations. The
semi-classical Boltzmann approach considers electrons as an adiabatic
Bloch wavepacket moving in a static band structure. We have shown
with Figs. 2 and 3 that the nonlinear transport responses appear only
abovea certain current threshold. Therefore, the conventional Boltz-
mann approach cannot capture the electric field-induced transitions
due to the non-equilibrium bands associated metric. Second, the for-
malism assumes a single distribution function per band, effectively
treating all carriers as coming from a single Fermi surface. However,
we have shown chirality-selective transport due to theimbalancein the
occupation of two different Fermi pockets with opposite Chern num-
bers. These currents of different chirality may have different scattering
and relaxation dynamics, which mustbeincorporatedin the transport
equations. Moreover, theassumption of alocalized and non-interacting
Blochwavepacket used inthe Boltzmann formalism cannot be used to
accurately describe the phase-coherent transport of multifold fermi-
ons. Nevertheless, we have found that the Boltzmann formalismis very
useful to qualitatively describe our experimental results.

The current density ], flowing into the outer arms of the device along
X, as shown in the schematic of Fig. 1c, is given by

) ==ef o, 2)

3
with jk xzj% and fis the non-equilibrium distribution function, v,
11

isthe velocity of anelectron wavepacket along xand Dis the modified
density of states, given as

D=1+ %B 0 3)
In the case of B= 0, the motion of electron wavepacket is given by
the equation
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wheree(k)isthe energy dispersionrelation. The first termis the group
velocity, whereas the second term is the anomalous velocity. As
described in the main text, we purposefully applied £, along the prin-
cipal axes of PdGa to minimize the Ohmic contribution of £, along x.
Thus, the group velocity along x due to £, would be close to zero. Thus
incorporating v, in equation (2) gives

eZ

)= ) flem) s)

Intherelaxation time approximation, the non-equilibrium distribu-
tion function with afirst-order correction is given by
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wherefoisthe Fermi-Diracequation, 7is the intranode scattering and
wis the frequency of the applied a.c. electrical signal £,(= Eysin(w?)).
Onsubstituting equation (6) inequation (5), the current densityJ, can
be written as the sum of first-order and second-order electric-field
terms Jand J?as

2
JE(D :_%Lfoﬂygz (7)
o___ 1
5= h(1-iwt) Jx akﬂf2 If (01, E? (8)

Inequation (7), the overall integration of @, throughout the Brillouin
zone under TRS should be zero. However, j()}) may contribute to
first-order transverse currentin our device geometry as showninFig.1c
under non-equilibrium steady-state conditions. However, there would
be equal contribution from both of the Fermi pockets without any
preferential scattering. The voltage response of J(l) would bein-phase
with theapplied current, represented asV,\ in Extended DataFig. 5(i).
Meanwhile, j(z originating due to OAM dlpole would be of second-
order,since £ smz(wt) E02(1 cos(2wt))/2. Itsvoltageresponsewould
be 11/2 shifted with respect to the applied current, represented as V5,
in Extended Data Fig. 5(ii). Extended Data Fig. 5a,b shows the experi-
mental measurement of these responses for the left and right arms of
the device.

Inour experiments, the above equations correspond to our observed
voltage responses below 55 pA, where the g is zero and the Berry cur-
vature is the dominant quantum geometry component. As discussed
in the main text, the quantum metric is non-zero above 55 pA and we
getafield-induced Berry curvature Q, , =V, x (GE,). Substituting this
into JVand J@ converts theminto second-orderand third-order trans-
verse currents, respectively, which are given by

12 e [l £ (x (GENE. ©)

IO« [ 0% x (GENE? (10)

These equations are the basis of the experimental data discussed
in the main text in Fig. 2 and Fig. 3. J%¥ will contribute to a first-
order and third-order current response, because E3sin*wt =
E; (4smwt+ 2sinGwt+ r[)) Their voltage response would be in-phase
with the applied current applied current, represented asV.* and V3! in
Extended Data Fig. 5.

We also observed 11/2 shifted responses of V.X, V), and V;¥ . These
responses are shownin Extended Data Fig. 6, Fig. 3 and Fig. 2(i), respec-
tively. The appearance of V,, V3, and V3, dueto J¥, J?and J®, respec-
tively suggests the presence of aninductive impedance, as suggested
by Faraday’s law. These responses only start to dominate after the
current threshold of 55 pA is reached when g is non-zero. It suggests
thattheinductance experienced by the chiral fermionic currentinthe
right and left arms is the function of g" and g®, respectively. The
dependence of V!, V¥ and V', responses on g allowed us to capture
its opposite sign for topological Fermi pockets atI'and R points. Nota-
bly, it also suggests that the chiral fermionic current carries orbital
angular moments. As in our case, it will lead to generation of a spin
current since PdGa has a large spin-orbit coupling®. The inductance
values for the chiral currents followinginto the right and left arm can
convey the magnitude of these currents. We used the overall applied
currentappliedinthe device in our calculation, which gives the lower
limit estimation of the inductance reactance, as given in Extended
DataFig. 6.

Theoretical considerations for the quantum interference of
chiral current

The phase acquired by a free electron due to electric-field-induced
Berry connection (A,) inthe absence of an external magnetic field along
the pathjis given by

e
9=Eng-d|j a1
In our system the vector potential A, experienced by an electronin
the left and right arms is G*¢, and G'€,, respectively. Thus, the phase
difference due tothe acquired by the electrontravelling along the left
(6g) and right (6;) arms is given by

A0=9R—er=%(chgz-dlj—jcfgz-dlj) (12)

Assuming G does not vary spatially, we can rewrite the above equa-
tionas

IE %(GR -GhaAv, (13)

where AV, is the voltage difference across the MZI. The term G* - G' is

non-zero as G of Fermi pockets at R and I have opposite signs. Thus,

we would observe the oscillationin phase on applied current, as shown
in Fig. 5b.

Temperature dependence

Extended Data Fig.7a-c show the log-scaled temperature dependence
of the first-order, V;, and V,, longitudinal responses in one of the
arms of the device. Extended Data Fig. 7a shows that the first-order
response decreases with temperature till 15 K after which it starts
to saturate. Upon cooling further, the V,,and V,, responses start
to appear, as shown in Extended Data Fig. 7b,c. The appearance
of the V,, response is concurrent with the observed upturnin the
first-order response, as expected from equation (1). The V;,and V,,
responses start to appear below 3.4 K and 14 K, respectively. The
exact transition temperature varied between devices, with differ-
ent device geometries and crystallographic orientations. However,
the concurrentappearanceinthe upturn of the first and third-order
responses was always observed in all the measured devices. Data
at lower temperatures were measured in a Bluefors system which
showed that the nonlinear responses start to saturate below 1 K. Note
that these data are not shown because they had a considerably better
signal-to-noise ratio due to the low-noise filters presentin the Bluefors
system. Extended DataFig. 7d,e shows the relative modulation of the
first-order responses with magnetic field orientation in the right and
left arms, respectively, at different temperatures. The modulationin
the different arms remains of opposite signs below 100 K evenin the
device with ‘valve off’ position. After 100 K, the change in the sign of
the modulationintheright arm was observed. Thereafter, both arms
share the same sign of modulation, albeit of different magnitudes.
Above 200 K, the modulation with magnetic field orientation starts
to disappear in both of these arms.

Extended DataFig. 7fshows the temperature dependence of the FFT
amplitude of the V;, oscillation with the magnetic field. The amplitude
ofthe oscillation decays slowly with temperature below 1K, after which
it starts to decreases more sharply with temperature. The amplitude
decay trend matches the temperature dependence of the magnitude
of'the V,,shownin Extended Data Fig. 7c. We strongly believe that the
FFT amplitude is linked with the quantum metric magnitude. The V,,
response is the direct indicator of quantum metric response. Assum-
ing amplitude decay solely due to an inelastic mechanism would not
be accurate as the quantum metric does not scale with the scattering
time in Drude conductivity. Therefore, the amplitude decay was not
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correlated to the phase-coherent length because the mechanism of
decoherence of chiral fermions is not completely known. We also tried
to measure the amplitude of the oscillation of the V,, response with
applied current showninFig.5b. We observed that the oscillation period
changed with temperature, and the FFT amplitude broadened into mul-
tiple peaks. Hence, tracking the FFT amplitude with temperature was
not trivial. It may be due to temperature variation of current-induced
magnetization, which influences the oscillation period.

Possible trivial-state contributions to current directionality
PdGa belongs to a gyrotropic class with the tetrahedral chiral point
group 23 (T), which allows for a Dresselhaus-type spin-orbit cou-
pling*®. The spin-orbit coupling can cause splitting of the trivial band
(and topological bands). The applied electric field creates non-
equilibriumspin polarization of both spins, as shownin Extended Data
Fig. 8a. The current applied along z would create a spin polarization
for both spins along z. A previous study in 2002 proposed the spin
galvaniceffect, inwhichelectric current was produced due to spatially
uniform non-equilibrium spin polarization*. Empirically, the electric
currentdensity (j,) is linked with the average spin of the electron (S,)
byj =X Qaysy, where Qs the second-rank pseudotensor of a gyro-
tropic crystal. These currents are semi-classically modelled using
spin-dependent scattering asymmetry. In the conventional spin gal-
vanic effect, the current is galvanized because of the asymmetry in
spin-flip scattering, which requires a spin population imbalance of a
particular spin. However, opposite spin currents can also be galvanized
because of the asymmetry in skew scattering, asin the case of inverse
spin Hall effect, as schematically shown in Extended Data Fig. 8b.
Similar to the spin galvanic effect, the inverse spin Hall effect also
generates a dipolar term proportional to (k - S) because of spin-
dependent correction of the Fermi-Dirac distribution (é‘jj('s) (ref. 50).
For non-zero Q,,, this would generate currents of opposite spins in
differentarmsof the device, instead of the spin Hall voltage measured
in a conventional Hall device. The spin currents generated due to
inverse spin Hall effect (or spin galvanic effect) can give the desired
currentdirectionally solely due to the trivial bands of PdGa. This filtra-
tion of spin current into different arms is conceptually similar to the
filtration of the chiral fermions due to electric field-induced quantum
geometry.

The magnitude of opposite spin currents galvanized into the outer
arms would depend on the size of the Fermi surface™ and of, ¢ These
parameters are similar for both spin currents originating from the
Fermisurface of asame trivial band. Therefore, we would expect that
the relative magnitude of currentin both arms would remain similar.
It would be irrespective of the crystallographic direction of applied
current, even when the magnitude of individual spin current may vary
because of anisotropic skew scattering. In Extended Data Fig. 2, we
have shown that we can tune the relative magnitude of the generated
currentinboth arms by passing currentin different crystal directions.
Therefore, the spin currents galvanized due to Q,, of trivial bands
cannot explain the differences in the relative magnitude of currents
measured in different devices. We will now provide the second evi-
dence by ruling out the involvement of the Q  -like tensor from the
trivial bands. We measured anomalous Hall response in three devices
with crystallographic orientation corresponding to ‘valve on’, I* on’
and ‘I" on’ positions. Extended Data Fig. 8c shows the electrical con-
figuration used to measure the Hall responses. The magnetic field was
rotated in the yz plane, where 8 = 90° corresponds to the field along
the direction of applied current z. Extended Data Fig. 8d shows the
relative change in the magnitude of the Hall response on magnetic
orientationinadevice with ‘valve on’ position with respect to 8 = 90°.
Theresponseinthis valve position resembles the response expected
from a trivial Hall effect. AQT and AQ® have a similar magnitude con-
tribution to the OAM dipolein the ‘valve on’ position. Therefore, there
is no anomalous Hall response due to the absence of any net

magnetization. The Hall response was also similar in the device in
‘valve off” state, whichis expected because of the absence of the OAM
dipoleitselfalong the y-axis. Extended Data Fig. 8e,f show the relative
changeinthe magnitude of the Hall response with the magnetic field
orientation in the device in ‘I on’ and ‘I" on’ position, respectively.
These responses show the presence of an anomalous Hall response
with distinct symmetries. In ‘/* on’ position, a net magnetization is
present because AQR has larger contribution in the OAM dipole than
AQ". The symmetry of the Hall responses matches the symmetry of
the longitudinal response of chiral current discussed in Fig. 4b(i).
Meanwhile, AQ" contributes more to the OAM dipole in /" on’ position;
therefore, the anomalous Hall response captures its two-fold sym-
metry. The three distinct anomalous Hall responses observed in our
study cannot be explained by Qay-driven currents. Ourresultsindicate
that the observed two distinct Hall responses can be explained only
by considering the AQ" and AQR contributions coming from two dif-
ferent topological Fermi pockets.

Role of Fermi-arcs in long-range coherence

The phase coherence of electrons in a typical metal such as Cu is
typically of the order of few tens of nanometre. However, we show in
our device that the phase coherence length of chiral current is above
15 um. The long coherence length is due to the chiral nature of the
charge carriersinthetopological states. There are three possibilities
ofelectronic states for fermions to occupy when they scatter into the
left orright arm of the device due tov,. They can scatter into (1) trivial
states; (2) topological states with opposite chirality; or (3) topological
states with the same chirality. The chiral fermions scattering into
trivial states would violate the Nielsen-Ninomiya theorem®. It would
imply fermions losing their chirality on scattering into non-chiral
trivial states. Thus, the decoherence of chiral current into trivial states
cannot occur even in the presence of empty trivial states near the
Fermi-level. The fermions can also undergo inter-valley scattering
into the topological states with opposite Chern number. Notably,
Fermi-arc states existing on the surface provide a direct pathway for
the fermions to switch their chirality as it connects the topological
band crossings with opposite Chern numbers. We present our hypoth-
esis of the role of Fermi-arcs in preserving the phase coherence of
chiral fermionic currents. There are two pairs of spin-split Fermi-arcs
that connect the I' point to the R points at the corners of the Brillion
zone at the top and bottom surfaces>. The chiral current /X can leak
into the I' band by the Femi-arcs present on the surface, whereas the
opposite will occur for the chiral current 1. Thus, the flow of the leak-
age currentisoutward fromIl toRintherightarm, whereasitisinwards
towards I' from R in the left arm. We posit that the presence of
current-induced magnetization of opposite polarities prevents the
charge relaxation through Fermi-arcs in both arms. Consequently,
the chiral current due to the preferential occupancy of topological
bands can have longer relaxation times.
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Extended DataFig.1| Quantification of Valve positions. Schematic showing
thedevices mentioned in Extended Data Table 1, categorised into different
valve positions. The valve positions are quantified using the parameter ¢.
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column) and ‘Valve Off’ (right column) positions. The electrical configuration
used to measure these responses was the same as shownin Fig. 2.

Extended DataFig. 2| Passive control of the chiral fermionic valve.
a-cComparison ofthe third-order (a(i)-c(i)) and second-order (a(ii)-c(ii)) responses
intheleftand rightarms of the devicein the ‘I*On’ (left column),I"On’ (middle
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Extended DataFig.3|Active control of the chiral fermionic valve. (a) (top)
False-coloured SEM image of the device prepared by placing the lamellainside
thetrenchmadein the substrate. (middle) Schematic of the MTJ stack deposited
ontop of the device. (bottom) Top view of the device. The scale baris10 pm.
b(i)-(ii) Dependence of the third-order responsein the left and right arms of the
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deviceinthe MTJ configuration with magnetization direction along the Xand Z
directionsata77.77 Hzfrequency of the applied current. c(i)-(ii) The variation
ofthe third-order responseinleftand right armwith the frequency of the
applied current. The magnetization of the MT) was along X. The electronic
configuration was the same as shownin Fig. 4 of the main text.
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configuration to measure these responses was same as in Fig. 2. a(i)- (iii) show armofthe device, respectively. b(i)-(iii) show these responses for the currents
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Extended DataFig. 6 | Inductive reactance of chiral current. a-bInductive reactance of chiral fermionic currents flowing into the leftand rightarmsat 3.5K

respectively. Theelectrical configurations are the same asin Fig. 2.
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Extended DataFig.7| Temperature dependence of the NLH responses and
quantuminterference. a-c Variation of the first, third, and second-order
responsesinone ofthedevices’arms. d-eRelative variation of the first-order
responseintherightandleftarmofthe device, respectively, with magnetic
field orientation at different temperatures with an applied current of 400 pA.
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The magnetic field of 2 T wasrotated in the xy plane, as discussed in Fig. 4 of the
manuscript.fTemperature dependence of the FFT amplitude of the magnetic
fieldsinduced oscillation of the third-order response. Note that these data,

with the exception of the datain (f) were measured ina PPMS system (base
temperature 2 K).
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Extended DataFig. 8| Anomalous Hall effect. a The Rashbasplit trivial bands
inthe presence of spin-orbit coupling. b Spin current galvanised dueto the
presence of Q,, of the spin-split trivial band. ¢ The electronic configuration
used to measure the Hallresponses.d The Hall response of the device in the
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‘Valve On’ state. e-f Therelative variation for the Hall response with the magnetic
field orientationinthe device with ‘I*On’and ‘I" On’ positions. These responses
were measured using 400 pA of applied currentat2 K.
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Extended Data Table 1| Summary of different fabricated
devices

Device z- x-direction (0]
name direction R @
Vi
QG20 [011] [100] 38.65°
QG13 [100] 5° away 49.43°
from [011]
QGo09 [100] 8° away 4.84°
from [011]
QG18 [011] [100] OFF
QG11 [100] 8° away 83.88°
from [010]

a Table showing the crystal orientation of the devices fabricated in different valve positions.
The current is applied along z, and the NLH currents are collected along x. The valve positions
are quantified using the parameter ®. The third-order voltages were measured at 80 pA at
3.4Kto calculate @. The crystal is well oriented along [100], therefore the error margin while
fabricating devices is within 1-2 degrees. However, the crystal is not well aligned along other
directions; thus, the margin for error is a bit higher, around 4-5 degrees.



Extended Data Table 2| Summary of devices with ® close to 45°

Device Dimensions Iihreshold (V2w » V3e)
name [I, w, t] in pm in pA in uv
QG13 [5.85, 1.4, 1.3] 55 (0.01, 0.036)
QG20 [6.4, 2, 2.7] 58.8 (0.028, 0.04)
QG17 [6, 2.6, 3.3] 57.8 (0.12, 0.28)*
QG21 [24.3, 2.3, 3] 57.9 (0.01, 0.026)
*at 50 mK

Table showing the threshold current and the magnitude of the NLH responses measured for
devices having @ closer to 45°. [Lw,t] corresponds to the length, width, and thickness of the
conduction channel. The length was measured between the voltage probes of an individual
arm. NLH responses were measured at 70 uA and 3.4K except for the device labelled with

* that was measured at 50 mK.



	A chiral fermionic valve driven by quantum geometry

	Chiral fermionic separation by the NHL effect

	Quantum metric response by a field-induced OAM

	Chiral fermionic current carries orbital magnetization

	Quantum interference of chiral current

	Conclusions

	Online content

	Fig. 1 Multifold topological semimetal PdGa.
	Fig. 2 Filtering chiral fermions from trivial charge using the NLH effect.
	Fig. 3 Quantum metric due to electric-field-induced OAM.
	Fig. 4 Chiral fermionic current carries orbital magnetization.
	Fig. 5 Quantum interference of chiral current.
	Extended Data Fig. 1 Quantification of Valve positions.
	Extended Data Fig. 2 Passive control of the chiral fermionic valve.
	Extended Data Fig. 3 Active control of the chiral fermionic valve.
	Extended Data Fig. 4 Interference below the threshold current.
	Extended Data Fig. 5 NLH responses as per Eq.
	Extended Data Fig. 6 Inductive reactance of chiral current.
	Extended Data Fig. 7 Temperature dependence of the NLH responses and quantum interference.
	Extended Data Fig. 8 Anomalous Hall effect.
	Extended Data Table 1 Summary of different fabricated devices.
	Extended Data Table 2 Summary of devices with Φ close to 45°.




