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A chiral fermionic valve driven by quantum 
geometry

Anvesh Dixit1, Pranava K. Sivakumar1, Kaustuv Manna2,3, Claudia Felser2 ✉ & 
Stuart S. P. Parkin1 ✉

Multifold topological semimetals host fermions with opposite chiralities at topological 
band crossings1–3. Chiral fermionic transport in topological systems often relies on  
high magnetic fields or magnetic dopants to suppress trivial transport and create an 
imbalance in occupancy of opposite Chern-number states4,5. Here we use the quantum 
geometry6,7 of topological bands to filter fermions by chirality into distinct Chern-
number-polarized states. This allows for the real-space separation of currents with 
opposite fermionic chiralities, which we have demonstrated by observing their 
quantum interference in the absence of any magnetic field. Devices fabricated from 
single-crystal PdGa in a three-arm geometry exhibit quantum-geometry-induced 
anomalous velocities8,9 of chiral fermions, thereby exhibiting a nonlinear Hall effect. 
The resultant transverse chiral currents with opposite anomalous velocities are 
thereby spatially separated into the outer arms of the device. These chiral currents in 
opposing Chern number states also carry orbital magnetizations with opposite signs. 
The mesoscopic phase coherence of these chiral currents facilitated their quantum 
interference10 in a Mach–Zehnder interferometer. Our findings establish a chiral 
fermionic valve that exhibits three key properties: spatially separates chiral fermions 
into Chern-number polarized states by using their quantum geometry, enables tuneable 
current-induced magnetization and provides a platform for controllable quantum 
interference of chiral quasiparticles using an electric current and magnetic field.

The chiral fermions in the topological states facilitates efficient spin and 
orbital angular momentum transport and play a crucial part in quantum 
electronics devices such as interferometers5,10–14. Meanwhile, chiral 
topological states in proximity with superconductors or magnets can 
lead to applications in quantum computing15 and cryogenic memories16. 
Thus, achieving mesoscopic coherent transport of chiral fermions in 
these topological states is crucial to realizing low-power topological 
electronics17–19. However, access to these states in a typical topological 
metal is often limited because of the concurrent transport of electrons 
in trivial states20. The separation of the contributions of topological 
states from trivial states in their transport response is important21,22. 
Moreover, the linear electrical response of chiral fermions are innately 
zero because of the averaging of contributions from topological states 
with opposite Chern number under time-reversal symmetry (TRS)23. 
An imbalance between right-chiral and left-chiral fermions is neces-
sary to see their transport effects in a nonmagnetic material21. Thus, 
minimizing the transport contribution of trivial states while creating 
an imbalance in the occupancy of right-chiral and left-chiral fermi-
ons is essential to the study of chiral fermions in topological systems.  
A typical strategy is through the application of large magnetic fields 
or by magnetic doping, which makes their practical application dif-
ficult. However, a strategy that rather filters the charge transport 
in the topological states from the trivial states would enable their 
study in the absence of any magnetic field. It would also allow for the 

charge currents of opposite fermionic chirality to exist in the same  
device.

A non-trivial quantum geometry distinguishes the topological bands 
from trivial bands. The quantum geometric tensor (or Fubini–Study 
metric), T g F= − i

2 , consists of two parts, in which the real part g is the 
band normalized quantum metric tensor, and the imaginary part F is 
the Berry curvature tensor, related to the Berry curvature pseudovec-
tor Ω as ϵ=α αβγ βγ

1
2Ω F  (refs. 6,7,24). The use of quantum-geometry- 

induced phenomenon to study chiral fermionic transport in topo-
logical matter holds practical significance for two key reasons. First, 
it allows for the control of chiral fermionic degrees of freedom without 
an external magnetic field. Second, it enables access to the transport 
in topologically protected states, even when the transport coexists in 
the trivial states. Multifold topological semimetals (or chiral topo-
logical semimetals) are a unique class of materials in which their crys-
tallographic chirality gives rise to their electronic chirality in 
reciprocal space1,3,25. The dynamics of electrons near topological band 
crossings are those of massless relativistic fermions with a particular 
chirality that is reflected in its Chern number1,26,27. A non-zero Chern 
number is closely linked with the presence of chiral topological states, 
for example in quantum Hall effect and Chern insulator5,11,12. Here we 
discuss PdGa, that has a P213 space group, and whose crystallographic 
chirality implies the absence of any inversion centre and mirror planes. 
Figure 1a shows a schematic of the crystal structure of PdGa and its 
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topological Fermi pockets ΓFP at the Γ point and RFP at the R point28,29. 
The signs of the Chern numbers of these pockets are related to the 
geometric chiralities of the screw axes along [100] and [111], respec-
tively, in a given enantiomer. The multifold topological band crossings 
at the Γ and R points with opposite Chern numbers host chiral fermions 
with spin 3/2 (+ spin 1/2) and spin 1, respectively1–3. These band cross-
ings act as the source and sink of orbital angular momentum (OAM) 
monopoles with large Chern numbers of ±4 (refs. 28,29). The OAM 
arises from the topological features captured by the Berry curvature 
and the spatial angular distribution of electronic states encoded in the 
quantum metric tensor30,31.

In this work, we demonstrate a strategy to filter the charge transport 
in topological bands from trivial bands using the nonlinear Hall effect 
(NLH). The three-armed device geometry shown in Fig. 1b was prepared 
using focused-ion beam milling techniques32,33 and designed to stimu-
late chiral fermionic filtration. Fermions with opposite chiralities are 
collected in the two outer arms of the device because of their opposite 
anomalous velocity, as shown in Fig. 1c. The spatial separation of fer-
mions based on their chirality results in the preferential occupation of 
topological states with opposite Chern numbers in the different arms 
in this non-equilibrium steady state. The transport of chiral fermions 
in preferentially occupied topological states furthermore induces an 
orbital magnetization28,30. We observe the quantum interference of 
these chiral currents in the outer arms by Mach–Zehnder interferom-
etry, which, thereby, proves their long-range phase coherence. Based 
on these findings, we demonstrate the working of a chiral fermionic 
value in which the coherent flow of chiral fermionic current can be 
controlled using the quantum geometry of the topological bands.

Chiral fermionic separation by the NHL effect
Quantum transport in topological matter is influenced by the quantum 
geometry of the electronic bands. Nonlinear responses can thereby 
be used to probe the quantum geometry in transport measure-
ments9,34–36. The quantum geometrical curvature of electronic bands 
can generate transverse currents because of the contribution from an 
anomalous velocity37. Under TRS, the anomalous velocity contribution 
is given by, e= − ×a Ev Ω , where E  is the applied electric field. A 
non-equilibrium Berry curvature is generated in a system with non-zero 
g with an applied electric field along certain crystallographic direc-
tions9. This electric-field-induced Berry curvature Ωε is given by, 

EΩ G= ∇ × ( )ε k , where G is the Berry connection polarization tensor, 

related to the g using the band energy derivative e= − ε
∂
∂G g  (refs. 8,9,35). 

Here we use va as our tool for achieving charge transport filtration 
between the topological and trivial states. This takes place only for 
states with a net geometrical curvature ΔΩε. We denote ΔΩε as the OAM 
dipole that arises due to the field-induced quantum geometry of the 
topological bands. Figure 1c shows this scheme in which fermions in 
topological states at ΓFP and RFP gain an additional transverse velocity 
due to the anomalous velocity induced by ΩΔ ε

Γ and Δ ε
RΩ , respectively. 

The sign of the projection of Δ ε
ΓΩ  and Δ ε

RΩ  along the y-axis depends on 
the Chern numbers of ΓFP and RFP. The ΩΔ ε

Γ projection along the positive 
y-axis scatters fermions in ΓFP towards the negative x-axis and the ΩΔ ε

R 
projection along the negative y-axis scatters fermions in RFP towards 
the positive x-axis. Therefore, at the junction of a three-arm device, as 
shown in Fig. 1c, fermions in the topological state at ΓFP preferentially 
scatter into the right arm of the device and those in the topological 
state at RFP scatter into the left arm of the device. Meanwhile, the elec-
trons in the trivial states, which lack Ω, scatter preferentially into the 
middle arm of the device (at cryogenic temperatures when scattering 
events are reduced).

The transverse velocity due to Δ ε
Γ,RΩ  results in the generation of a 

third-order NLH response9. The transverse current calculated using 
the semiclassical Boltzmann equation is given by (Methods)

∫I ∝ ∂ (∇ × ( )) (1)x
k

k k z z
Γ,R Γ,R 2E EG

where Ez is the applied electric field along z. The quantum geometric 
entity Γ,RG  acts as a controllable knob to filter the chiral fermions, 
because its value for the electronic states at ΓFP and RFP differ depend-
ing on the direction of Ez  (Methods). Setting ωt= sinz z ,0E E , the pro
duced nonlinear transverse current can be written as a sum of first-order  
and third-order responses as I I I= +x ω ω

Γ,R Γ,R
3
Γ,R  (using the identity 

ωt ωt ωtsin = sin + sin(3 + π)3 3
4

1
4 ). Their transverse voltage responses 

were measured under an applied longitudinal current Iω along the z, 
aligned with the principal axis of the PdGa crystal to minimize trans-
verse Ohmic contributions.

Several devices were fabricated out of PdGa crystal to investigate 
the relative contributions from Δ ε

ΓΩ  and Δ ε
RΩ  in the third-order NLH 

response. The crystallographic orientation was carefully chosen such 
that the transverse transport contribution from ΩΔ ε

Γ and ΩΔ ε
R are of a 

similar magnitude. In a typical device, the current is passed along [100] 
(z-axis), and the NLH currents are collected along [011] (x-axis) (Fig. 1b). 
The method of synthesizing the PdGa crystals is given in ref. 38. 
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Fig. 1 | Multifold topological semimetal PdGa. a, Top, illustrations of the 
crystal structure of PdGa along the [100] and [111] directions. The schematics 
also show the left-chiral 21 and right-chiral 31 screw axes of Pd atoms along these 
directions. Bottom, schematic of the geometry of the Fermi pockets at the  
Γ and R points that have Chern numbers of CΓ = −4 and CR = 4, respectively.  
b, False-coloured SEM image of the microstructured device of PdGa made 
using focused-ion beam techniques, showing the three-arm geometry.  

c, The schematic demonstrates the filtration of the charge transport in the 
topological states based on their non-trivial quantum geometry. The field- 
induced OAM Δ ε

ΓΩ  carried by fermions in the topological bands at Γ give them 
an anomalous velocity a

Γv  towards the right arm of the device, and OAM ΩΔ ε
R 

carried by fermions in the topological bands at R give them an anomalous 
velocity va

R towards the left arm of the device. Scale bar, 10 μm (b).
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Figure 2a,b shows the dependence of the third-order NLH response 
V3ω and the linear response Vω/Iω in the left and right arms of the device, 
respectively, at 3.5 K, as a function of the magnitude of the applied 
current. Note that the schematics shown in the figures show the electri-
cal connections made to measure these responses. As shown in  
Fig. 2a(i) and Fig. 2b(i), the third-order response V3ω starts to appear 
after a threshold current of about 55 μA is reached. The opposite signs 
of V3ω for these two cases suggests their origin is due to Δ ε

ΓΩ  and Δ ε
RΩ  

with opposite signs of g (Methods). Note that the first-order response, 
shown in Fig. 2a(ii) and Fig. 2b(ii), remains almost constant up to 55 μA. 
However, a transition occurs near 55 μA, after which the first-order 
response starts to increase quadratically. The simultaneous appearance 
of third-order responses and first-order transition near 55 μA suggests 
that their origin is the NLH effect expected from equation (1). Notably, 
the first-order transition was not observed in d.c. current–voltage 
characteristics or dV–dI measurements, where the resistance remains 
constant with the current. It further corroborates that the origin of the 
first-order transition is due to the NLH-induced currents. These results 
indicate that the nonlinear current responses I I,ω ω

Γ
3
Γ  due to Δ ε

ΓΩ  are 
produced in the right arm of the device and responses I I,ω ω

R
3
R  due to 

Δ ε
RΩ  are produced in the left arm of the device.

Quantum metric response by a field-induced OAM
The appearance of a NLH response above a certain current threshold 
suggests a current-dependent g. This was explored from measurements 
of the second-order responses. Figure 3a,b shows that the V2ω response 
starts to predominantly appear above about |55| μA, for current flow-
ing into both the left and right arms, respectively. The V2ω signal 
emerges simultaneously with the NLH-induced current responses 
shown in Fig. 2, suggesting a link between them. Notably, Fig. 3a,b also 
shows the sign reversal of V2ω for the NLH-induced current due to ΩΔ ε

Γ 
and Δ ε

RΩ . Recent studies have linked the occurrence of V2ω due to a 

quantum metric in a system that maintains PT  symmetry while simul-
taneously breaking P and T  (refs. 35,39). Similar symmetry arguments 
can be made be for ΩΔ ε

Γ,R, which acts like an orbital analogue of spin in 
a topological antiferromagnet40. Thus, the observed V2ω responses for 

ΩΔ ε
Γ and  Δ ε

RΩ  show the presence of a non-zero g in our system after 
the current threshold. Meanwhile, the sign reversal suggests that the 
g of ΓFP and RFP have opposite signs. Therefore, as per equation (1), the 
non-zero g generates NLH-induced transverse currents in the right and 
left arms of the device. These findings further corroborate the role of 
Δ ε

ΓΩ  and  Δ ε
RΩ  in the charge separation of fermions in topological states. 

Furthermore, we have confirmed that the observed NLH responses are 
not attributable to trivial states, despite the potential coexistence of 
trivial-state mechanisms with quantum geometric effects (Methods).

Chiral fermionic current carries orbital magnetization
The chiral fermions scattered transversally due to ΩΔ ε

Γ into the right 
arm and Δ ε

RΩ  into the left arm of the device occupy topological states 
at ΓFP and RFP, respectively, which, thereby, preserves their chirality41. 
Thus, the transverse current generated by Δ ε

ΓΩ  and Δ ε
RΩ  is preferentially 

carried by topological states at ΓFP and RFP, respectively. The resulted 
preferential scattering would create an imbalance in the occupation 
of chiral fermions in the topological states in the left and right arms, as 
shown schematically in Fig. 4a. This charge transport by chiral fermions 
in Chern-number-polarized-topological states is termed as chiral cur-
rent. The occupational imbalance of these topological states allows for 
chiral currents to carry a finite orbital magnetization ( Γ,Rm ) derived 
from Δ ε

Γ,RΩ  (ref. 21). The Γ,Rm  carried by the chiral current follows the 
symmetry of the preferentially occupied Fermi pocket. The chiral cur-
rents for different applied magnetic field (B) orientations were studied 
to reveal their underlying symmetry. The modulation in the density of 
states by the term B. Ω ε

Γ,R directly influences the chiral currents42. Hence, 
the field orientation θ-dependent modulation of the chiral current 
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Fig. 2 | Filtering chiral fermions from trivial charge using the NLH effect.  
a, Schematic of the electrical configuration for measurement of the currents 
I ω3

R , Iω
R entering the left arm of the device. (i) and (ii) show the dependence of the 

third-order V3ω and first-order Vω/Iω responses on the applied current Iω at 3.5 K. 
b, Schematic showing the electrical configuration for measurement of the 

currents I ω3
Γ , Iω

Γ entering the right arm of the device. (i) and (ii) show the 
dependence of V3ω and Vω/Iω responses with respect to Iω at 3.5 K. The measured 
V3ω is the quadrature component (Y) relative to the reference signal. Although 
Vω and Iω were plotted by calculating the net magnitude of the signal (that is, 

X Y+2 2 , where X is in-phase component).
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reveals the underlying symmetry of ΩΔ ε
Γ,R. This was measured in the 

left and right arms using electrical contacts along these arms, as shown 
schematically in Fig. 4b,c. The magnetic field was rotated in the xy plane, 
where θ = 0° corresponds to the field oriented along y.

The θ-dependent third-order and first-order responses for the left 
arm are shown in Fig. 4b and compared with the same responses for the 
right arm in Fig. 4c. Highly distinctive responses are found for the two 
arms reflecting the distinctive symmetries of the respective Fermi pock-
ets. RFP has a three-fold symmetry, whereas ΓFP has a four-fold symmetry 
(Fig. 4a). For the left arm, the inherent three-fold symmetry of RFP is 
broken by z

REG , which gives rise to the observed modulations around 
60° and 240°. These results indicate that the topological states at RFP 
preferentially carry the chiral current in the left arm. Whereas, for the 
right arm, Fig. 4c(i),(ii) rather show modulations of Vω and V3ω around 
90° and 270°, respectively, that is, a two-fold symmetry. These 
θ-dependent modulations follow the symmetry of ΩΔ ε

Γ in which the 

four-fold symmetry of ΓFP is broken by EG z
Γ . Thus, the topological bands 

at ΓFP preferentially carry the chiral current in the right arm. Thus, we 
conclude that the chiral currents in the left and right arms result from 
their preferential occupancy in topological states with opposite Chern 
numbers. Notably, the signs of the relative change in magnitudes of both 
Vω and V3ω are of opposite sign in the left and right arms, respectively, as 
can be seen in Fig. 4b,c. This shows that the orbital magnetizations mΓ 
and mR have opposite polarities. These results show the two key charac-
teristics of the chiral currents in the arms of the device: they preferentially 
occupy Chern-number-polarized-topological states with opposite Chern 
numbers, and they carry orbital magnetizations with opposite polarities.

Quantum interference of chiral current
The observed nonlinear response in our mesoscopic devices is an 
indicator of the long-range phase coherence of the chiral currents. 
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Nature  |  Vol 649  |  1 January 2026  |  51

To study this further, we prepared a Mach–Zehnder interferometer 
(MZI) device, as shown in Fig. 5a, that has a similar geometry to the 
device studied earlier but without a middle arm. The chiral currents 
induced by the NLH effect in the left and right arms remain the same in 
the MZI. However, the first-order Ohmic current will coexist with the 
first-order chiral current in both arms, whereas the third-order chiral 
currents show similar characteristics as before. The dependence of 
V3ω measured across the MZI on the applied current at 30 mK is shown 
in Fig. 5b. Clear oscillations in V3ω are found over the entire range of 
current applied. Moreover, the oscillations overlap for increasing and 
decreasing current.

The chiral currents I ω3
Γ  and I ω3

R  acquire a phase due to the current- 
induced orbital magnetizations mΓ and mR in the right and left arms, 
respectively. The phase acquired by the chiral currents have different 
signs because mΓ and mR have opposite polarities. Meanwhile, the 
absolute phase difference acquired by the chiral current varies with 
the applied current, because mΓ and mR are dependent on current. 
Thus, the phase difference carried by the chiral current results in V3ω 
oscillating with the applied current with a well-defined period (Meth-
ods). The current-oscillation period ΔI ≈ 6 μA corresponds to a change 
in the flux linkage by a magnetic flux quantum ϕ0. We can calculate an 
effective current-to-flux conversion coefficient (or effective inductance 
Leff) of the interferometer using the relations Leff = φ0/ΔI ≈ 0.68 nH. The 
quantum interference of the chiral currents passing through the two 
macroscopic arms without any applied magnetic field is possible only 
if, first, chiral currents of opposite chiralities exist in the left and right 
arms, and, second, the chiral currents have a long-range phase coher-
ence of more than 15 μm.

The phase coherence of these chiral fermionic currents was further 
explored in the presence of an external magnetic field oriented along 
y. As shown in Fig. 5c, oscillations of V3ω were observed, which were 
periodic over magnetic field. We also observed that the phase of the 
oscillations was shifted by π, when the magnetic field sweep direction 
was reversed, as shown in Fig. 5d. It shows the inductive nature of the 
voltage response of the chiral fermionic current (Methods). Assuming 

a single quasi-free electron interference similar to the Aharonov–Bohm 
effect, the B-oscillation period of 15.82 mT gives an interference path 
area A ϕ H= /μ Δ ≈ 0.26 μmI 0 0

2. AI is about 400 times smaller than the 
actual device geometry. The assumption of single quasi-free electron 
behaviour is invalid in our case because the chiral currents consist of 
topological quasiparticles with spin 1/2, spin 1 and spin 3/2 having 
orbital magnetic momentum in different arms1,43. The effective g-factor 
of topological quasiparticles in systems with strong spin–orbit coupling 
can be significantly higher than that of a free electron44. Thus, the total 
phase accumulated due to enhanced spin-phase contribution33 and 
conventional Aharonov–Bohm phase may account for the observed 
larger oscillation period than conventional free-electron systems. 
Further theoretical studies are also needed to understand the decoher-
ence mechanism and quantify the coherence length. The influence of 
interacting fermions on quantum interference makes our system an 
interesting platform to probe topological quasiparticle excitations.

Conclusions
Innovative ways of controlling and manipulating electronic degrees 
of freedom initiates advances in electronics. Semiconductors enable 
switchable valves for charge flow in a transistor45, whereas magnets 
enable spin valves for control of electron spin flow46. Our work presents 
a new device concept of a chiral fermionic valve, which filters chiral 
fermions in topological states from charge transport in trivial states 
using their quantum geometry. Furthermore, we show the mesoscopic 
phase coherence of the chiral fermions through the quantum interfer-
ence of their chiral currents. The geometry of the three-arm device 
gives rise to the filtration of chiral fermions through the NLH response 
driven by an electric-field-induced OAM dipole ΩΔ ε

Γ,R. The ΩΔ ε
Γ and 

Δ ε
RΩ  induced currents exist with opposite chiralities in the right and 

left arms, respectively. The preferential occupancy of chiral currents 
in topological states was confirmed by studying their modulation on 
varying the external magnetic field orientation. Our results indicate 
that the chiral currents carry orbital magnetizations with opposite 
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in V3ω with applied magnetic field μ0H at 30 mK with a current of 20 μA.  
d, Dependence of the oscillations in V3ω on the sweep direction of μ0H at 30 mK 
with a current of 20 μA. The magnitude of the field-sweep rate in c and d was 
0.83 mT s−1. The magnetic field was applied out of plane along the y-axis. Here 
V3ω is the in-phase component of the lock-in signal. Scale bar, 10 μm (a).
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polarities in the respective arms in Chern-number-polarized topo-
logical states. We show that the generation of orbital magnetization 
at the mesoscale is linked with the long-range coherence of the chiral 
currents. The quantum interference of chiral currents in a Mach–
Zehnder interferometer was observed, which confirms their meso-
scopic phase coherence. Based on these findings, we propose a chiral 
fermion valve in which fermions in topological bands are separated 
based on their chirality using their non-trivial quantum geometry. 
Similar to the gate voltage in a transistor, the control knob for the chi-
ral fermionic value is the field-induced OAM (Methods). Chiral fermi-
onic valve establishes three remarkable abilities: (1) it spatially separates 
chiral fermions of opposite chiralities into Chern-number-polarized 
topological states; (2) it enables control over both the polarity and 
magnitude of current-induced magnetization; and (3) it provides a 
versatile platform for studying the quantum interference of chiral 
quasiparticles, which can be tuned using electric current and magnetic 
field. Our findings apply to the extended family of topological materi-
als with multifold topological crossings, enabling access to chiral 
topological states without magnetic fields, doping or electrostatic 
gating. The chiral fermionic valve opens up new device applications 
for harnessing the chiral degree of freedom in future quantum elec-
tronic devices.
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Methods

Device preparation and electrical measurements
The procedure for device fabrication from PdGa crystal using 
Ga-ion-based focused-ion beam technique is as follows32. A lamella 
was milled out of the bulk crystal. Then the lamella was transferred 
in situ to the TEM grid for polishing till the desired thickness is achieved. 
The thickness of the lamella used to make devices in our study ranges 
from 1 μm to 4 μm. Then the lamella was microstructured into desired 
three-arm geometry on the TEM grid. Then the microstructured lamella 
was transferred in situ onto the SiO2 substrate with prepatterned Au 
contact pads. The electrical contacts between the lamella and the con-
tact pads were made by sputtering Ti–Au bilayers. Then the etching step 
was carried out to remove shorting between the electrical contacts. Dur-
ing the device preparation procedure, special care was taken to reduce 
the surface damage. For example, the transport channel in the device 
was never scanned with the Ga ion beam after the fine polishing step. 
However, surface damage of few tens of nanometres may still exists even 
after several fine polishing steps. Therefore, a dry etching step using 
low-energy Ar ion was performed to further reduce the thickness of 
this amorphous layer before the deposition of Ti–Au to make electrical 
contacts. The effect of surface damage on transport measurements was 
also studied by purposefully damaging the sample surface with the ion 
beam. The comparison of results before and after ion-irradiation were 
compared to study the influence of the amorphous layer on transport. 
As also observed in previous studies, the increase of the amorphous 
layer thickness did not negatively influence the transport response 
through topological states33.

The electrical measurements were primarily performed in a Bluefors 
LD−400 dilution refrigerator. Meanwhile, experimental data in Fig. 4 
with the applied magnetic field of 2 T were measured in a PPMS Dyna-
Cool cryostat. The electrical measurements were carried out using 
Zurich Instruments lock-in amplifiers (MFLI) at 7.919 Hz and 13.333 Hz 
reference frequencies. The oscillator voltage amplitude was varied 
to sweep the applied current through the device (with a buffer resist-
ance in series). The higher harmonic voltage responses from devices 
were simultaneously measured with the multi-demodulator option 
provided in an MFLI. Each demodulator produces two output signals: 
one corresponding to the in-phase component (X) and the other to 
the quadrature component (Y) relative to the reference signal. Special 
considerations were taken to increase the signal-to-noise ratio, such 
as using high-frequency electronic filters and avoiding ground loops. 
The magnetic field orientation was swept using a three-axis supercon-
ducting magnet from American Magnetics in a Bluefors refrigerator 
(Fig. 4b(ii)). An out-of-plane rotator puck was used in the PPMS case, in 
which the rotation axis is along the applied current under the magnetic 
field of 2 T (Fig. 4b(i),c). Two different configurations of electrode 
contacts with the electrical transport channel in a device were studied. 
It was observed that the measured third-order voltage responses were 
more prominent when the Ti–Au connected the top surface of the chan-
nel with the electrical contacts. The enhanced third-order response 
made it possible to measure the Bθ dependence of the third-order 
response, as shown in Fig. 4b(ii),c(ii).

We have measured 23 devices fabricated in different geometries and 
crystal orientations. The five focal crystal orientations are presented 
in Extended Data Table 1. We can define four working states of the valve, 
depending on the relative magnitude of the chiral currents in the two 
arms. We have quantified the position of the valve using the term 

V

V
ϕ = tan−1 ω

ω

3
R

3
Γ , as shown in Extended Data Fig. 1. ϕ = 45° represents ‘valve 

on’ state, when there are equal magnitudes of the NLH currents from 
the Γ and R Fermi pockets in the right and left arms, respectively. ϕ = 0° 
represents ‘IΓ on’ state and ϕ =90° represents ‘IR on’ state, where NLH 
current in the right arm is predominantly generated due the Γ Fermi 
pocket and that in the left arm is predominantly generated due the R 
Fermi pocket. Finally, the ‘valve off’ state, in which chiral current 

generation is suppressed in both arms. We made four devices in a 
three-arm geometry near to the ‘valve on’ position. All four devices 
show the same experimental features discussed in the paper, namely, 
the appearance of distinct NLH responses of similar magnitude in dif-
ferent arms after the current threshold and their distinct symmetries 
of first-order responses with magnetic field orientations, as discussed 
in Fig. 3b(i),c(i). The absolute value of the nonlinear response varied 
with the dimensions of the device, as given in the Extended Data Table 2. 
The modulations of the third-order responses discussed with 
Fig. 3b(ii),c(ii) were observed in two of these devices. A good signal- 
to-noise ratio is needed to measure the nonlinear responses in the 
presence of the magnetic field, which we posit is a limiting factor in 
our PPMS system. We made three Mach–Zehnder interferometer (MZI) 
devices with a ‘valve on’ crystallographic position. All three showed 
oscillations in third-order response with applied current and magnetic 
field, as discussed in Fig. 5. The interference visibility ϑ for the MZI with 
ϕ = 49.4° and 38.6° were 0.86 ± 0.06 and 0.69 ± 0.1, respectively. ϑ was 
calculated using the relation V V

V V

−

+
ω ω

ω ω

3
amp

3
avg

3
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3
avg , where V ω3

amp is the distance 
between the peak and crest of the oscillation, which is calculated using 
V V| − |ω ω3
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min  and V ω3

avg is the mean offset of the oscillation given by 
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. V ω3
max and V ω3

min are the minimum and maximum values of the 
V3ω signal. We also found that ϑ was sensitive to the electronic proper-
ties of the conduction channel sidewall. The value of ϑ increased when 
the sidewall opposite to the voltage probe is not electrostatically 
screened by a presence of another electrode.

Passive and active control of the chiral fermionic valve
The chiral currents generated in the two arms of the device depend on 
the magnitudes of Δ ε

ΓΩ  and Δ ε
RΩ , as given in equation (1). We can control 

the relative projection of ΩΔ ε
Γ and Δ ε

RΩ  along y, using the distinct sym-
metry of the Fermi pockets at the Γ and R points. Although the sym-
metry of a crystal is defined by its space group, the symmetry of a Fermi 
pocket is determined by the local symmetry of the band structure at a 
given k-point47. Therefore, Fermi pockets at the Γ and R points can 
locally exhibit distinct mirror-like symmetry M*, which maps 
k k k k k k( , , ) ( , − , )x y z x y z⟶  (refs. 38,47). The projection of the net OAM 

along the y-axis is zero if a M* exists along the xz-plane. *M  can selec-
tively exist for only one of the Fermi pockets at Γ or R depending on the 
crystallographic direction of applied current. For example, when the 
current passes along [100] (z-axis) and the NLH-induced chiral current 
is collected along [010] (x-axis), M* exists along the xz-plane for the 
Fermi pocket at Γ, whereas it is broken for the Fermi pocket at R. Thus, 
the OAM contribution from topological bands at R would predomi-
nantly exist along the y-axis. Extended Data Fig. 2a(i),(ii) shows the 
third-order and second-order responses in each arm in a device fabri-
cated in the mentioned crystallographic directions. We can observe 
that the chiral current is primarily generated in the left arm of the 
device. It represents the valve in the ‘IR on’ state because the chiral cur-
rent in the left arm preferentially exists in the Fermi pocket at R. The 
opposite is true when current is passed along the [100] (z-axis) and 
chiral current is collected along the [011] (x-axis). In this case, the OAM 
contribution from the topological bands at Γ would predominantly 
exist. Extended Data Fig. 2b(i),(ii) shows the nonlinear responses meas-
ured in a device made along these crystal directions. In this case, non-
linear currents are predominantly generated in the right arm of the 
device, thus representing the valve in the ‘IΓ on’ position. Finally, 
Extended Data Fig. 2c(i),(ii) shows the nonlinear responses in a device 
in the ‘valve off’ states where the generation of chiral current is sup-
pressed in both arms. In this case, the current is passed along [011] and 
NLH currents were collected along [100]. We call this strategy to con-
trol the valve position ‘passive’ because the valve tunability is linked 
with the intrinsic quantum geometry of the topological bands rather 
than the experimentally controlled parameter.

We now discuss a proof-of-concept study to achieve active tunability 
of the valve. As discussed in the main text, the chiral fermionic current 
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exists due to the preferential occupation of the R Fermi pocket in the left 
arm and Γ Fermi pocket in the right arm of the device. Thus, the mag-
nitude of chiral currents can be controlled by tuning the occupational 
imbalance between two Fermi pockets. We fabricated a magnetic tunnel 
junction (MTJ) with in-plane magnetization on top of individual arms 
to locally probe the influence of the magnetic field on chiral currents. 
We developed a new fabrication technique to ensure the surface of the 
lamella is at a similar height to the substrate. Our strategy prevents 
any sudden height changes to ensure smooth deposition of the MTJ. 
Extended Data Fig. 3a shows the false-coloured SEM image of the pre-
pared device with MTJ electrodes deposited on top of the left and right 
arms. The lamella was prepared in the ‘valve on’ position. In the first set 
of experiments, we studied the effects of the magnetization direction 
of the MTJ on the chiral current of both arms. Mx and Mz represent direc-
tions when the magnetization of MTJ is perpendicular and parallel to the 
current-induced orbital magnetization. Extended Data Fig. 3b(i),(ii) show 
the V3ω responses at 77.77 Hz in the left and right arms, respectively, with 
Mx and Mz magnetizations. We can observe from Extended Data Fig. 3b 
that the chiral current has the same order of magnitude in the left and 
right arms for the Mx orientation. However, the nonlinear response of 
the right arm switches sign when the MTJ magnetization was switched 
from Mx to Mz; meanwhile, the V3ω response in the left arm remains simi-
lar. Notably, these measurements were performed in the absence of an 
external magnetic field. The magnetic field was only used to switch the 
magnetization direction of the MTJ. Extended Data Fig. 3b shows a pos-
sible strategy to tune the valve state from ‘valve on’ to ‘I R on’, based on 
a MTJ magnetization switching mechanism. In the second experiment, 
we varied the frequency of the applied current to study the interaction 
of the chiral current with the magnetization of MTJ by measuring the 
inductive impedance. Extended Data Fig. 3c shows the dependence of 
V3ω responses at different frequencies of the applied current with the 
MTJ in the Mx configuration. We note from Extended Data Fig. 3b(ii),c(ii) 
that the impedance response of I Γ is not significantly changed when the 
frequency is varied between 77.77 Hz and 47 Hz, whereas the imped-
ance response of I R is reduced by half. From Extended Data Fig. 3c(i), 
we see that the magnitude of I R is further reduced by an order of magni-
tude upon going to the frequency of 23 Hz. Meanwhile, the I Γ response, 
although diminished, has the same sign and the order of magnitude. 
Through Extended Data Fig. 3c, we show that the valve can be tuned from 
‘valve on’ position to ‘I Γ on’ position by changing the frequency of the 
applied current from 77.77 Hz to 23 Hz with the MTJ in the Mx configura-
tion. Through these two experiments, we provide a first step to pursue 
active tunability of the chiral fermionic valve by its integration with an 
MTJ. However, a deeper understanding of the interaction between the 
chiral current and the magnetization dynamics is needed to further 
analyse these results. Also, a systematic study is crucial to analyse the 
switching reproducibility, fidelity and scalability of the MTJ-integrated 
device, which presents an important direction for future work.

Quantum Interference below threshold current
We have shown the appearance of the V3ω responses after a certain 
current threshold in Fig. 2. Meanwhile, Fig. 5b shows clear oscillations 
of V3ω with applied current even below the threshold current. As shown 
in Extended Data Fig. 4a, we could also observe weak V3ω oscillation 
response below the threshold current in the three-arm geometry as 
well. The subsequent question is that why does the interference occur 
even below the threshold current. We can explain the observed phe-
nomenon using the schematic shown in Extended Data Fig. 4b. We 
discussed in the main text that the fermions in different Fermi pockets 
gain a transverse velocity due to the presence of Δ ε

Γ,RΩ . Equation (1) 
shows the magnitude of the current going into different arms of the 
device from different Fermi pockets is proportional to ΩΔ ε

Γ,R . The 
appearance of a nonlinear response after the current threshold sug-
gests that ΩΔ ε

Γ,R is non-zero only above it. However, Ω ε
Γ,R does exist on 

individual topological Fermi pockets even when Δ ε
Γ,RΩ  is zero. The 

presence of Ω ε
Γ,R causes the fermions to contribute to the scattering 

equally in both arms of the device from both of the Fermi pockets. 
Therefore, the chiral current in each of the arms would not be prefer-
entially carried by one of the Fermi pockets. However, the chiral cur-
rents in both of the arms do exist. But, the nonlinear responses of 
current with opposite chirality cancel out below the threshold current. 

ΩΔ ε
Γ,R becomes non-zero above the threshold current. Thereby, the 

fermions from the Fermi pockets at Γ and R, are preferentially scattered 
into the right and left arms, respectively. This creates an occupational 
imbalance in these arms, which leads to the observation of the chiral 
current response from the individual Fermi pockets. The presence of 
chiral current in both scenarios makes it possible to observe the quan-
tum interference of the chiral current even below the threshold current.

Theoretical considerations for the NLH effect
We use the semi-classical Boltzmann formalism to derive the nonlin-
ear responses. However, it is crucial first to discuss the limitations 
of the assumptions taken to derive these transport equations. The 
semi-classical Boltzmann approach considers electrons as an adiabatic 
Bloch wavepacket moving in a static band structure. We have shown 
with Figs. 2 and 3 that the nonlinear transport responses appear only 
above a certain current threshold. Therefore, the conventional Boltz-
mann approach cannot capture the electric field-induced transitions 
due to the non-equilibrium bands associated metric. Second, the for-
malism assumes a single distribution function per band, effectively 
treating all carriers as coming from a single Fermi surface. However, 
we have shown chirality-selective transport due to the imbalance in the 
occupation of two different Fermi pockets with opposite Chern num-
bers. These currents of different chirality may have different scattering 
and relaxation dynamics, which must be incorporated in the transport 
equations. Moreover, the assumption of a localized and non-interacting 
Bloch wavepacket used in the Boltzmann formalism cannot be used to 
accurately describe the phase-coherent transport of multifold fermi-
ons. Nevertheless, we have found that the Boltzmann formalism is very 
useful to qualitatively describe our experimental results.

The current density Jx flowing into the outer arms of the device along 
x, as shown in the schematic of Fig. 1c, is given by

J v
k

∫ fD= − e (2)x x

with ∫ ∫x ≡ d

(2π)

3

3k
k  and f is the non-equilibrium distribution function, vx 

is the velocity of an electron wavepacket along x and D is the modified 
density of states, given as

B ΩD
e
ħ

= 1 + ⋅ (3)

In the case of B = 0, the motion of electron wavepacket is given by 
the equation


ħ

ϵ k e
ħ

=
1 ∂ ( )

∂
+ × (4)xv

k
Ω

where ϵ k( ) is the energy dispersion relation. The first term is the group 
velocity, whereas the second term is the anomalous velocity. As 
described in the main text, we purposefully applied z along the prin-
cipal axes of PdGa to minimize the Ohmic contribution of z  along x. 
Thus, the group velocity along x due to z would be close to zero. Thus 
incorporating vx in equation (2) gives

( )∫e
ħ

f= − (5)
x z y

2

J Ω
k

In the relaxation time approximation, the non-equilibrium distribu-
tion function with a first-order correction is given by



k
f f f f

eτ
iωτ

f
= + = +

1 −
∂
∂

(6)z0 (1) 0
0

where f 0 is the Fermi–Dirac equation, τ is the intranode scattering and 
ω is the frequency of the applied a.c. electrical signal z(= E0sin(ωt)). 
On substituting equation (6) in equation (5), the current density Jx can 
be written as the sum of first-order and second-order electric-field 
terms J x

(1) and J x
(2) as

∫e
ħ

f= − (7)
x y z
(1)

2
0J Ω

k


∫ ∫τe
ħ ωτ

f
f= −
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∂
∂
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x y z y z
(2)

3 0
2 0 2 J

k
Ω Ω

k k
k

In equation (7), the overall integration of yΩ  throughout the Brillouin 
zone under TRS should be zero. However, x

(1)J  may contribute to 
first-order transverse current in our device geometry as shown in Fig. 1c 
under non-equilibrium steady-state conditions. However, there would 
be equal contribution from both of the Fermi pockets without any 
preferential scattering. The voltage response of J x

(1) would be in-phase 
with the applied current, represented as Vω

X  in Extended Data Fig. 5(i). 
Meanwhile, x

(2)J  originating due to OAM dipole37 would be of second- 
order, since E ωt E ωtsin ( ) = (1 − cos(2 ))/20

2 2
0
2 .  Its voltage response would 

be π/2 shifted with respect to the applied current, represented as V ω
Y
2  

in Extended Data Fig. 5(ii). Extended Data Fig. 5a,b shows the experi-
mental measurement of these responses for the left and right arms of 
the device.

In our experiments, the above equations correspond to our observed 
voltage responses below 55 μA, where the g is zero and the Berry cur-
vature is the dominant quantum geometry component. As discussed 
in the main text, the quantum metric is non-zero above 55 μA and we 
get a field-induced Berry curvature = ∇ × ( )ε y k z,Ω G . Substituting this 
into x

(1)J  and x
(2)J  converts them into second-order and third-order trans-

verse currents, respectively, which are given by

 ∫ f∝ (∇ × ( )) (9)x z z
(2) 0J G

k
k

∫ f∝ ∂ (∇ × ( )) (10)x z z
(3) 0 2J G

k
k k  

These equations are the basis of the experimental data discussed  
in the main text in Fig. 2 and Fig. 3. x

(3)J  will contribute to a first- 
order and third-order current response, because E ωtsin =0

3 3  

( )E ωt ωtsin + sin(3 + π)0
3 3

4
1
4

. Their voltage response would be in-phase 
with the applied current applied current, represented as Vω

X  and V ω
X

3  in 
Extended Data Fig. 5.

We also observed π/2 shifted responses of Vω
X , V ω

Y
2  and V ω

X
3 . These 

responses are shown in Extended Data Fig. 6, Fig. 3 and Fig. 2(i), respec-
tively. The appearance of Vω

Y, V ω
X

2  and V ω
Y

3  due to x
(1)J , x

(2)J  and x
(3)J , respec-

tively suggests the presence of an inductive impedance, as suggested 
by Faraday’s law. These responses only start to dominate after the 
current threshold of 55 μA is reached when g is non-zero. It suggests 
that the inductance experienced by the chiral fermionic current in the 
right and left arms is the function of gΓ and gR, respectively. The 
dependence of Vω

Y , V ω
X

2  and V ω
Y

3  responses on g allowed us to capture  
its opposite sign for topological Fermi pockets at Γ and R points. Nota-
bly, it also suggests that the chiral fermionic current carries orbital 
angular moments. As in our case, it will lead to generation of a spin 
current since PdGa has a large spin–orbit coupling3. The inductance 
values for the chiral currents following into the right and left arm can 
convey the magnitude of these currents. We used the overall applied 
current applied in the device in our calculation, which gives the lower 
limit estimation of the inductance reactance, as given in Extended  
Data Fig. 6.

Theoretical considerations for the quantum interference of 
chiral current
The phase acquired by a free electron due to electric-field-induced 
Berry connection (Aε) in the absence of an external magnetic field along 
the path j is given by

∫θ
e
ħ

= ⋅ d (11)ε jA l

In our system the vector potential Aε experienced by an electron in 
the left and right arms is GRz  and GΓ

z , respectively. Thus, the phase 
difference due to the acquired by the electron travelling along the left 
(θR) and right (θΓ) arms is given by

E E( )∫ ∫θ θ θ
e
ħ

Δ = − = ⋅ d − ⋅ d (12)z j z jR Γ
R ΓG l G l

Assuming G does not vary spatially, we can rewrite the above equa-
tion as

G Gθ
ħ

VΔ =
e

( − )Δ (13)z
R Γ

where VΔ z is the voltage difference across the MZI. The term −R ΓG G  is 
non-zero as G of Fermi pockets at R and Γ have opposite signs. Thus, 
we would observe the oscillation in phase on applied current, as shown 
in Fig. 5b.

Temperature dependence
Extended Data Fig. 7a-c show the log-scaled temperature dependence 
of the first-order, V3ω and V2ω longitudinal responses in one of the 
arms of the device. Extended Data Fig. 7a shows that the first-order 
response decreases with temperature till 15 K after which it starts 
to saturate. Upon cooling further, the V3ω and V2ω responses start 
to appear, as shown in Extended Data Fig. 7b,c. The appearance 
of the V3ω response is concurrent with the observed upturn in the 
first-order response, as expected from equation (1). The V3ω and V2ω 
responses start to appear below 3.4 K and 14 K, respectively. The 
exact transition temperature varied between devices, with differ-
ent device geometries and crystallographic orientations. However, 
the concurrent appearance in the upturn of the first and third-order 
responses was always observed in all the measured devices. Data 
at lower temperatures were measured in a Bluefors system which 
showed that the nonlinear responses start to saturate below 1 K. Note 
that these data are not shown because they had a considerably better 
signal-to-noise ratio due to the low-noise filters present in the Bluefors 
system. Extended Data Fig. 7d,e shows the relative modulation of the 
first-order responses with magnetic field orientation in the right and 
left arms, respectively, at different temperatures. The modulation in 
the different arms remains of opposite signs below 100 K even in the 
device with ‘valve off’ position. After 100 K, the change in the sign of 
the modulation in the right arm was observed. Thereafter, both arms 
share the same sign of modulation, albeit of different magnitudes. 
Above 200 K, the modulation with magnetic field orientation starts 
to disappear in both of these arms.

Extended Data Fig. 7f shows the temperature dependence of the FFT 
amplitude of the V3ω oscillation with the magnetic field. The amplitude 
of the oscillation decays slowly with temperature below 1 K, after which 
it starts to decreases more sharply with temperature. The amplitude 
decay trend matches the temperature dependence of the magnitude 
of the V2ω shown in Extended Data Fig. 7c. We strongly believe that the 
FFT amplitude is linked with the quantum metric magnitude. The V2ω 
response is the direct indicator of quantum metric response. Assum-
ing amplitude decay solely due to an inelastic mechanism would not 
be accurate as the quantum metric does not scale with the scattering 
time in Drude conductivity. Therefore, the amplitude decay was not 
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correlated to the phase-coherent length because the mechanism of 
decoherence of chiral fermions is not completely known. We also tried 
to measure the amplitude of the oscillation of the V3ω response with 
applied current shown in Fig. 5b. We observed that the oscillation period 
changed with temperature, and the FFT amplitude broadened into mul-
tiple peaks. Hence, tracking the FFT amplitude with temperature was 
not trivial. It may be due to temperature variation of current-induced 
magnetization, which influences the oscillation period.

Possible trivial-state contributions to current directionality
PdGa belongs to a gyrotropic class with the tetrahedral chiral point 
group 23 (T), which allows for a Dresselhaus-type spin–orbit cou-
pling48. The spin–orbit coupling can cause splitting of the trivial band 
(and topological bands). The applied electric field creates non- 
equilibrium spin polarization of both spins, as shown in Extended Data 
Fig. 8a. The current applied along z would create a spin polarization 
for both spins along z. A previous study in 2002 proposed the spin 
galvanic effect, in which electric current was produced due to spatially 
uniform non-equilibrium spin polarization49. Empirically, the electric 
current density (jα) is linked with the average spin of the electron (Sγ) 
by j Q S= ∑α αγ γ , where Q is the second-rank pseudotensor of a gyro-
tropic crystal. These currents are semi-classically modelled using 
spin-dependent scattering asymmetry. In the conventional spin gal-
vanic effect, the current is galvanized because of the asymmetry in 
spin-flip scattering, which requires a spin population imbalance of a 
particular spin. However, opposite spin currents can also be galvanized 
because of the asymmetry in skew scattering, as in the case of inverse 
spin Hall effect, as schematically shown in Extended Data Fig. 8b. 
Similar to the spin galvanic effect, the inverse spin Hall effect also 
generates a dipolar term proportional to (k · S) because of spin- 
dependent correction of the Fermi–Dirac distribution (δfk S,

) (ref. 50). 
For non-zero Qxz, this would generate currents of opposite spins in 
different arms of the device, instead of the spin Hall voltage measured 
in a conventional Hall device. The spin currents generated due to 
inverse spin Hall effect (or spin galvanic effect) can give the desired 
current directionally solely due to the trivial bands of PdGa. This filtra-
tion of spin current into different arms is conceptually similar to the 
filtration of the chiral fermions due to electric field-induced quantum 
geometry.

The magnitude of opposite spin currents galvanized into the outer 
arms would depend on the size of the Fermi surface51 and δfk S,

. These 
parameters are similar for both spin currents originating from the 
Fermi surface of a same trivial band. Therefore, we would expect that 
the relative magnitude of current in both arms would remain similar. 
It would be irrespective of the crystallographic direction of applied 
current, even when the magnitude of individual spin current may vary 
because of anisotropic skew scattering. In Extended Data Fig. 2, we 
have shown that we can tune the relative magnitude of the generated 
current in both arms by passing current in different crystal directions. 
Therefore, the spin currents galvanized due to Qαγ of trivial bands 
cannot explain the differences in the relative magnitude of currents 
measured in different devices. We will now provide the second evi-
dence by ruling out the involvement of the Qαγ-like tensor from the 
trivial bands. We measured anomalous Hall response in three devices 
with crystallographic orientation corresponding to ‘valve on’, ‘IR on’ 
and ‘IΓ on’ positions. Extended Data Fig. 8c shows the electrical con-
figuration used to measure the Hall responses. The magnetic field was 
rotated in the yz plane, where θ = 90° corresponds to the field along 
the direction of applied current z. Extended Data Fig. 8d shows the 
relative change in the magnitude of the Hall response on magnetic 
orientation in a device with ‘valve on’ position with respect to θ = 90°. 
The response in this valve position resembles the response expected 
from a trivial Hall effect. ΩΔ ε

Γ and Δ ε
RΩ  have a similar magnitude con-

tribution to the OAM dipole in the ‘valve on’ position. Therefore, there 
is no anomalous Hall response due to the absence of any net 

magnetization. The Hall response was also similar in the device in 
‘valve off’ state, which is expected because of the absence of the OAM 
dipole itself along the y-axis. Extended Data Fig. 8e,f show the relative 
change in the magnitude of the Hall response with the magnetic field 
orientation in the device in ‘IR on’ and ‘IΓ on’ position, respectively. 
These responses show the presence of an anomalous Hall response 
with distinct symmetries. In ‘IR on’ position, a net magnetization is 
present because Δ ε

RΩ  has larger contribution in the OAM dipole than 
Δ ε

ΓΩ . The symmetry of the Hall responses matches the symmetry of 
the longitudinal response of chiral current discussed in Fig. 4b(i). 
Meanwhile, Δ ε

ΓΩ  contributes more to the OAM dipole in ‘IΓ on’ position; 
therefore, the anomalous Hall response captures its two-fold sym-
metry. The three distinct anomalous Hall responses observed in our 
study cannot be explained by Qαγ-driven currents. Our results indicate 
that the observed two distinct Hall responses can be explained only 
by considering the Δ ε

ΓΩ  and ΩΔ ε
R contributions coming from two dif-

ferent topological Fermi pockets.

Role of Fermi-arcs in long-range coherence
The phase coherence of electrons in a typical metal such as Cu is 
typically of the order of few tens of nanometre. However, we show in 
our device that the phase coherence length of chiral current is above 
15 μm. The long coherence length is due to the chiral nature of the 
charge carriers in the topological states. There are three possibilities 
of electronic states for fermions to occupy when they scatter into the 
left or right arm of the device due to va. They can scatter into (1) trivial 
states; (2) topological states with opposite chirality; or (3) topological 
states with the same chirality. The chiral fermions scattering into 
trivial states would violate the Nielsen–Ninomiya theorem23. It would 
imply fermions losing their chirality on scattering into non-chiral 
trivial states. Thus, the decoherence of chiral current into trivial states 
cannot occur even in the presence of empty trivial states near the 
Fermi-level. The fermions can also undergo inter-valley scattering 
into the topological states with opposite Chern number. Notably, 
Fermi-arc states existing on the surface provide a direct pathway for 
the fermions to switch their chirality as it connects the topological 
band crossings with opposite Chern numbers. We present our hypoth-
esis of the role of Fermi-arcs in preserving the phase coherence of 
chiral fermionic currents. There are two pairs of spin-split Fermi-arcs 
that connect the Γ point to the R points at the corners of the Brillion 
zone at the top and bottom surfaces3. The chiral current Iω

R can leak 
into the Γ band by the Femi-arcs present on the surface, whereas the 
opposite will occur for the chiral current Iω

Γ. Thus, the flow of the leak-
age current is outward from Γ to R in the right arm, whereas it is inwards 
towards Γ from R in the left arm. We posit that the presence of 
current-induced magnetization of opposite polarities prevents the 
charge relaxation through Fermi-arcs in both arms. Consequently, 
the chiral current due to the preferential occupancy of topological 
bands can have longer relaxation times.

Data availability
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Extended Data Fig. 1 | Quantification of Valve positions. Schematic showing 
the devices mentioned in Extended Data Table 1, categorised into different 
valve positions. The valve positions are quantified using the parameter ϕ.



Extended Data Fig. 2 | Passive control of the chiral fermionic valve.  
a-c Comparison of the third-order (a(i)-c(i)) and second-order (a(ii)-c(ii)) responses 
in the left and right arms of the device in the ‘IR On’ (left column), ‘IΓ On’ (middle 

column) and ‘Valve Off’ (right column) positions. The electrical configuration 
used to measure these responses was the same as shown in Fig. 2.
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Extended Data Fig. 3 | Active control of the chiral fermionic valve. (a) (top) 
False-coloured SEM image of the device prepared by placing the lamella inside 
the trench made in the substrate. (middle) Schematic of the MTJ stack deposited 
on top of the device. (bottom) Top view of the device. The scale bar is 10 μm. 
b(i)-(ii) Dependence of the third-order response in the left and right arms of the 

device in the MTJ configuration with magnetization direction along the X and Z 
directions at a 77.77 Hz frequency of the applied current. c(i)-(ii) The variation 
of the third-order response in left and right arm with the frequency of the 
applied current. The magnetization of the MTJ was along X. The electronic 
configuration was the same as shown in Fig. 4 of the main text.



Extended Data Fig. 4 | Interference below the threshold current. a. Oscillations 
in the third-order response with applied current at 3.4 K in the three-arm 
geometry at zero external magnetic field. b,c, Schematic showing the 

generation of chiral currents from different Fermi-pockets below (b) and 
above (c) the threshold current.
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Extended Data Fig. 5 | NLH responses as per Eq. 7–10. The electrical 
configuration to measure these responses was same as in Fig. 2. a(i)-(iii) show 

the dependence of first-order ω
ω

VX

I
, second-order V ω2

Y  and third-order V ω3
X  responses 

on the applied current Iω at 3.5 K for the currents Iω
R , I ω2

R  and I ω3
R  entering the left 

arm of the device, respectively. b(i)-(iii) show these responses for the currents 
Iω

Γ , I ω2
Γ  and I ω3

Γ  going into the right arm, respectively.



Extended Data Fig. 6 | Inductive reactance of chiral current. a-b Inductive reactance of chiral fermionic currents flowing into the left and right arms at 3.5 K 
respectively. The electrical configurations are the same as in Fig. 2.
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Extended Data Fig. 7 | Temperature dependence of the NLH responses and 
quantum interference. a-c Variation of the first, third, and second-order 
responses in one of the devices’ arms. d-e Relative variation of the first-order 
response in the right and left arm of the device, respectively, with magnetic 
field orientation at different temperatures with an applied current of 400 μA. 

The magnetic field of 2 T was rotated in the xy plane, as discussed in Fig. 4 of the 
manuscript. f Temperature dependence of the FFT amplitude of the magnetic 
fields induced oscillation of the third-order response. Note that these data, 
with the exception of the data in (f) were measured in a PPMS system (base 
temperature 2 K).



Extended Data Fig. 8 | Anomalous Hall effect. a The Rashba split trivial bands 
in the presence of spin-orbit coupling. b Spin current galvanised due to the 
presence of Qαγ of the spin-split trivial band. c The electronic configuration 
used to measure the Hall responses. d The Hall response of the device in the 

‘Valve On’ state. e-f The relative variation for the Hall response with the magnetic 
field orientation in the device with ‘IR On’ and ‘IΓ On’ positions. These responses 
were measured using 400 μA of applied current at 2 K.
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Extended Data Table 1 | Summary of different fabricated 
devices

a Table showing the crystal orientation of the devices fabricated in different valve positions. 
The current is applied along z, and the NLH currents are collected along x. The valve positions 
are quantified using the parameter Φ. The third-order voltages were measured at 80 μA at 
3.4 K to calculate Φ. The crystal is well oriented along [100], therefore the error margin while 
fabricating devices is within 1–2 degrees. However, the crystal is not well aligned along other 
directions; thus, the margin for error is a bit higher, around 4–5 degrees.



Extended Data Table 2 | Summary of devices with Φ close to 45°

Table showing the threshold current and the magnitude of the NLH responses measured for 
devices having Φ closer to 45°. [l,w,t] corresponds to the length, width, and thickness of the 
conduction channel. The length was measured between the voltage probes of an individual 
arm. NLH responses were measured at 70 µA and 3.4 K except for the device labelled with  
* that was measured at 50 mK.
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