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Abstract
We show that, during adiabatic evolution, any changes in entanglement can be attributed to a
succession of avoided energy level crossings at which eigenvalues swap their eigenvectors. These
swaps mediate the generation and redistribution of entanglement in multipartite systems. The
efficiency of this redistribution depends on the narrowness of the avoided level crossings and thus
constrains the speed of adiabatic evolution. Moreover, we relate the amount of entanglement
involved to the ruggedness of the energy landscape, which directly affects the hardness of a
computational problem. This enables an analysis of computational complexity and quantum
advantage from the point of view of entanglement requirements. Applied to adiabatic quantum
computation, our findings directly relate the computation’s speed to its utilization of entanglement
as a resource. The same principles extend to gate-based discretized adiabatic quantum algorithms,
including those for Hamiltonian simulation and combinatorial optimization.

1. Introduction

Entanglement, a phenomenon without a classical analog, is an essential resource for quantum technologies.
In this work, we analyze its dynamics during adiabatic evolution and show how this resource is generated and
redistributed within a multipartite quantum system.

We find that any change in entanglement during adiabatic evolution can be attributed to avoided energy
level crossings where eigenvalues swap their associated eigenvectors. We show that these exchanges constitute
the fundamental mechanism responsible for modifying the system’s entanglement structure. Furthermore,
the extent of these changes depends on the narrowness of the avoided crossing: the narrower it is, the more
significant the entanglement change. This, in turn, constrains the permissible speed of the adiabatic
evolution, which is limited by the size of the spectral gap at such narrowly avoided crossings. Therefore, our
results provide new insights into the relationship between an adiabatic quantum computation’s (AQC’s)
maximum speed and its use of entanglement.

We also relate the amount of entanglement required to the ruggedness of the energy landscape, which
affects the hardness of a computational problem. Rugged landscapes are characterized by many
well-separated low-energy local minima and typically correspond to classically hard problems. In such cases,
the ground state must explore and coherently superpose computational basis states that are widely separated
in Hamming distance. This leads to intermediate quantum states with high multipartite entanglement. For
example, in optimization problems where local minima are far apart, the adiabatic evolution must
transiently pass through superpositions of these distant configurations, thereby generating and redistributing
entanglement across many subsystems. These entanglement manipulations are governed by the mechanics
outlined above: eigenvector swaps at narrowly avoided level crossings.

These findings are applicable to AQC [1–6], a model known to be equivalent to standard gate-based
quantum computation up to a polynomial overhead. Also, this work extends naturally to gate-based digitized
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Figure 1. Systems Ã and A are prepared in an entangled state. The time evolution operator, U, is adiabatically generated by a
Hamiltonian which acts nontrivially only on system AB.

adiabatic algorithms such as the quantum approximate optimization algorithm (QAOA) [7, 8] and the
discretized adiabatic quantum algorithm used in Hamiltonian simulations [9–12]. Consequently, any change
in entanglement and associated computational slowdown in continuous evolution will also manifest in the
gate-based counterparts.

1.1. Setup
In order to analyze the basic mechanics underlying the generation and redistribution of entanglement during
adiabatic evolution, we consider a setup consisting of three systems, Ã, A, and B. This tripartite configuration
provides the minimal and general framework for analyzing entanglement transfer using the formalism of
quantum channels, which capture how entanglement is redistributed between subsystems. Two systems
suffice to generate or destroy entanglement; three systems are required to meaningfully track its
redistribution.

We take the Hilbert space of these systems to be finite-dimensional, which is justified as long as the
systems possess finite size and a finite energy budget. Systems Ã and A are assumed to be initially entangled.
During the subsequent unitary time evolution, systems A and B interact adiabatically while system Ã remains
a non-interacting ancilla, as illustrated in figure 1. This setup allows us to analyze how the interaction
generates entanglement between A and B, and also how Ã, which was initially entangled with A, can become
entangled with system B and/or with system AB. To this end, we will consider a quantum channel from A to
A′ and the complementary channel from A to B′, which together formalize how entanglement is
redistributed during the evolution. We will use Rényi entropy-based coherent information to analytically
quantify the extent of entanglement redistribution among partitions.

Intuitively, a tripartite setup captures the redistribution of entanglement between subsystems, or the loss
of entanglement due to interaction with an external environment. For example, Ã, A, and B could each be
qubit systems, where B acts as a target that acquires entanglement from A, which is initially entangled with Ã.
Alternatively, Ã and A could form an entangled pair, with B representing an environment that extracts
entanglement from ÃA through its interaction with A.

1.2. Methods
We consider the dynamics generated by a generic Hamiltonian of the form H0 + g(t)Hint, where the function
g(t) is called an adiabatic schedule that increases from zero to g(T)> 0 slowly enough for the evolution to be
adiabatic. Our overall task is to understand the evolution of the entanglement in the system ÃAB. For this, we
will decompose the evolution into a sequence of more manageable segments by employing the spectral and
adiabatic theorems. First, we use the spectral theorem to decompose Hint into rank-one projectors,
Hint =

∑
nλn |vn⟩⟨vn|. We then reschedule the adiabatic evolution by sequentially adiabatically adding, or

‘activating’, these projectors. We start with H0 and then one by one we adiabatically add µn|vn⟩⟨vn| by dialing
the prefactor µn of each projector |vn⟩⟨vn| from µn = 0 to µn = g(T)λn. In order to arrive at the final
Hamiltonian H0 + g(T)Hint, each of these adiabatic activations of a rank-one projector takes the form

H(µ) = D+µ |v⟩⟨v| (1)

where D is the Hamiltonian incorporating previous activations, |v⟩⟨v| := |vn⟩⟨vn| is the projector that is next
to be activated, and µ := µn is a schedule function adiabatically swept from the initial µ= 0 to its final value
µ= g(T)λn.

This technique may be interpreted as a piecewise scheduling protocol, in which rank-one projectors are
sequentially activated and remain active thereafter. The cumulative effect of these activations reconstructs the
full interaction Hamiltonian, thereby faithfully implementing the complete adiabatic evolution. Although
this schedule is physically sound and captures the full dynamics of the process, it is not intended as a
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practical computational scheme. Rather, it serves as a mathematically convenient framework for deriving
theoretical insights into the behavior of entanglement.

Having introduced the sequential activations of projectors, we can study the evolution of entanglement
within a single activation. Specifically, for each activation of a projector, we track the evolution of the
eigenvalues sn(µ) and eigenvectors |sn(µ)⟩ in H(µ)|sn(µ)⟩= sn(µ)|sn(µ)⟩ as µ is dialed in from 0 to its final
value. This is a useful decomposition because it allows us to recruit the recent results in [13], which
nonperturbatively describe the evolution of the eigenvalues sn(µ) and eigenstates |sn(µ)⟩ of Hermitian
operators H(µ) for all D and |v⟩, in finite-dimensional Hilbert spaces.

By applying these methods to the interactions in the multipartite system Ã,A,B, we show that, during
each activation of a new projector, the generation and transfer of entanglement decompose into a succession
of avoided level crossings at which, crucially, two eigenvalues exchange eigenvectors. These eigenvector
exchanges constitute the fundamental mechanism by which entanglement is generated and redistributed.

1.3. Structure of the paper
• Section 2 provides an intuitive overview of key findings, highlighting conceptual points and using
visualization.

• Section 3 introduces several lemmas that serve as basic mathematical preliminaries.
• Section 4 establishes conditions for maximizing the transfer or preservation of entanglement during the
adiabatic interactions of A and B.

• Section 5 appendix A demonstrate that complete entanglement transfer, or preservation, induces a clearly
structured evolution of the eigenspectrum and eigenvectors of the total time-dependent Hamiltonian of the
system ÃAB. Further, a link is established between the entanglement dynamics and the permutation group.

• Section 6 establishes a direct connection between the maximum speed of AQC and the generation and
transfer of entanglement. Specifically, it relates the narrowness of avoided level crossings to the efficiency of
entanglement dynamics during the evolution.

• Section 7 shows that the computational hardness of, for example, problems of combinatorial optimization,
in the sense of the ruggedness of its cost function landscape and the corresponding Hamming distance of
low energy candidate solutions, can be directly translated into the need for large amounts of temporary
multi-partite entanglement during the corresponding adiabatic computation.

• Section 8 introduces and applies measures of coherent information that are useful for non-perturbative
quantifying the transfer of entanglement among subsystems.

2. Intuitive overview of the results

As indicated above, our strategy is to decompose a given generic adiabatic dynamics into a succession of
adiabatic ‘activations’ of rank one projectors, and then for each activation to track the evolution of the
eigenvectors and eigenvalues. Here, each activation is described by Hamiltonian of the form
H(µ) = D+µ |v⟩⟨v|, where µ is adiabatically dialed from µ= 0 to its final value µ= g(T)λn, and D is the
Hamiltonian at the end of the prior activation. With the notation D|dn⟩= dn|dn⟩, we have dn = sn(0) and
|dn⟩= |sn(0)⟩.

During each of these activations, i.e. as a µ is adiabatically swept from µ= 0 to its final value µ= g(T)λn,
a succession of avoided level crossings occurs, see [13]. As we show in the present paper, if the system is
subdivided into subsystems, it is at these avoided level crossings that the generation and transfer of
entanglement among the subsystems occurs. This is because at each avoided level crossing, a pair of
eigenvalues swaps their eigenvectors.

These key dynamics are most clearly seen in those cases where |v⟩ is not parallel but almost parallel to an
initial eigenvector |sn(0)⟩= |dn⟩ of the initial Hamiltonian D. In these cases, which we will call edge cases, any
changes of the entanglement among Ã, A, and B while adiabatically sweeping µ from µ= 0 to µ= g(T)λn
always occur suddenly at specific values of µ that we will call critical µ values. It is at these critical µ values,
two energy eigenvalues, say sn(µ) and sn+1(µ) narrowly avoid each other and swap their eigenvectors, |sn(µ)⟩
and |sn+1(µ)⟩, thereby changing the structure of entanglement. In the non-edge cases, characterized by
generic |v⟩, the behavior remains qualitatively the same, except that the level crossings are avoided with
greater gaps, and the eigenvector swaps are less sudden.

The fact that in edge cases, i.e. for narrow gaps, each involved eigenvector evolves into an almost
orthogonal and therefore very different eigenvector over a very small range of values of µ implies that these
µ-values need to be traversed particularly slowly for the evolution to remain adiabatic. When the system is a
multi-partite system then, as we will show, this implies a relation between the narrowness of avoided level
crossings and the efficiency of entanglement transfers. In this way, an AQC’s utilization of the resource of
entanglement can be related to the maximum speed of that computation.
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Figure 2. The dynamics of the eigenvalues of H(µ) for a generic choice of D and with |v⟩ chosen to be (a) a trivial case, (b) an
edge case and (c) a non-edge case. The vertical gray bars indicate where avoided level crossings are.

Before we present the mathematical details, it will be useful to establish intuition and visualizations for
the dynamics of the generation and redistribution of entanglement that we discussed above. To this end, we
will (A) visualize the dynamics of eigenvalues and eigenvectors under adiabatic activation for a total system,
(B) apply this to visualize the generation of entanglement among subsystems A and B, and finally (C)
visualize the transfer of entanglement among subsystems by visualizing how system Ã, which was initially
entangled with A can become entangled with B or AB instead.

2.1. Visualization of the dynamics of eigenvectors and eigenvalues during an adiabatic activation
As outlined above, we decompose the general problem into segments of adiabatic evolution, each of which is
described by a Hamiltonian of the form of (1).

We begin by visualizing the dynamics of the eigenvalues. In the simplest case, |v⟩ equals one of the
eigenvectors of D, i.e. |v⟩ = |di⟩ = |si(0)⟩. The adiabatic evolution is trivial in this case, as all eigenvectors
stay the same and also all eigenvalues are constant, sn(µ) = sn(0) = dn, except for n = i where we have
si(µ) = si(0)+µ. Since si(µ) is the only eigenvalue that changes, it crosses the levels of all other eigenvalues,
see the blue line in figure 2(a).

Now let us consider what we call an edge case, i.e. a case where |v⟩ is not equal to but close to one of the
eigenvectors of D, i.e.: |v⟩ ≈ |di⟩= |si(0)⟩ for a fixed i. The adiabatic behavior is now very different: as
illustrated in figure 2(b), all level crossings are narrowly avoided as µ runs through the reals. We call the
values of µ at which these level crossing avoidances occur the critical µ values. The eigenvalue that is
increasing while µ runs through µ= 0 is the eigenvalue si(µ).

The non-edge cases, i.e. when |v⟩ is generic and not close to an eigenvector of D, the qualitative behavior
is similar, see [13]: as µ runs from µ=−∞ to µ=+∞, all eigenvalues sk(µ) strictly monotonically increase
and all level crossings are avoided, though generally less narrowly. This behavior is illustrated in figure 2(c).
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Figure 3. The evolution of the eigenvalue sk(µ) and eigenvector |sk(µ)⟩ as a function of the parameter µ. Annotations along the
eigenvalue curve specify the eigenvector corresponding to sk(µ). As µ runs from left to right, it passes two critical µ values, the
eigenvector |sk(µ)⟩ first transitions from |sk(µ)⟩ ≈ |sk(0)⟩ = |dk⟩ to |sk(µ)⟩ ≈ |v⟩ and then to |sk(µ)⟩ ≈ |dk+1⟩.

Figure 4. Example of an edge case with |v⟩ ≈ |d0⟩, illustrating the eigenvalue sk(µ) changing its eigenvector |sk(µ)⟩ when passing
through critical µ values (indicated by gray vertical dashed lines).

We now address the dynamics of the eigenvectors |sk(µ)⟩. In the trivial cases, as in figure 2(a), the
eigenvectors do not change. In the edge cases, |v⟩ ≈ |di⟩ = |si(0)⟩ for a fixed i, as illustrated in figure 2(b), let
us consider the k’th eigenvalue, dk = sk(0) of D. Initially, as µ is running from µ = 0 to larger values, sk(µ)
and its eigenvector remain approximately constant: sk(µ)≈ sk(0) = dk and |sk(µ)⟩ ≈ |sk(0)⟩ = |dk⟩. Then, at
a critical µ value, the eigenvalue sk(µ) starts to grow, see figure 2(b). At the same time, at this critical µ value,
the eigenvector |sk(µ)⟩ changes quickly from |sk(µ)⟩ ≈ |sk(0)⟩ = |dk⟩ to |sk(µ)⟩ ≈ |v⟩.

As µ grows further it eventually reaches the next critical µ value, where the eigenvalue sk(µ) changes its
eigenvector again, now from |sk(µ)⟩ ≈ |v⟩ to |sk(µ)⟩ ≈ |sk+1(0)⟩= |dk+1⟩. This is illustrated in figure 3.
Notice that for k = i, we have |si(µ)⟩ ≈ |v⟩ as µ passes through µ = 0.

The suddenness with which an eigenvalue changes its eigenvector as µmoves through a critical point is
illustrated in figure 4. The larger picture is, as shown in figure 2, that at each critical µ value two eigenvalues
narrowly avoid crossing. Figure 5 visualizes what this means for the eigenvectors |sk(µ)⟩ and |sk+1(µ)⟩ of two
eigenvalues sk(µ) and sk+1(µ) at a narrow crossing avoidance: the eigenvalues quickly trade their eigenvectors.

In later sections, we will show that the extent of crossing avoidance and suddenness of eigenvector change
is determined by a single parameter ϵ. In non-edge cases, as in figure 2(c), the situation is qualitatively the
same. All level crossings are avoided, and the eigenvalues partially trade their eigenvectors, although the level
crossings can be avoided less narrowly and can also occur at values other than the eigenvalues dk. Further,
during a phase in which an eigenvalue sn(µ) quickly grows, its eigenvector |sn(µ)⟩ need no longer
approximate |v⟩. See [13] for the details. In comparison, the edge cases are characterized by very narrow level
crossing avoidances that occur suddenly, and the associated eigenvector swaps are correspondingly sudden.
Hence, the edge cases offer sharper tools for analyzing or controlling entanglement dynamics. We will,
therefore, pay particular attention to the edge cases.
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Figure 5. At a critical µ value, the eigenvalues sk(µ) and sk+1(µ) of H(µ) = D+µ|v⟩⟨v| trade their eigenvectors.

Figure 6. Eigenvector swap at a critical µ value, in a two-partite system AB.

2.2. Visualization of entanglement generation in the bi-partite system AB
By applying these findings to a system that is divided into two subsystems, A and B, we can track the dynamics
of the entanglement between A and B during adiabatic evolution. The analysis can be applied to any
activation of a projector, i.e. with any starting Hamiltonian D. However, for the purpose of gaining intuition,
it is convenient to consider an initial Hamiltonian D that is of the typical form of a free Hamiltonian,
D = HA ⊗ I + I⊗HB. We denote the spectra of HA and HB by {ai},{bj} and we assume them to be generic,
i.e. such that the spectrum of D is non-degenerate. We denote the eigenbases of A and B by {|ai⟩},{|bj⟩}.

Further, when activating a projector |v⟩⟨v|, we will, for clarity, focus on edge cases, |v⟩ ≈ |ai⟩|bj⟩, for fixed
i and j. The dynamics at each critical µ value can then be deduced from figure 5: as two neighboring energy
eigenvalues narrowly avoid crossing at a critical µ value, they trade their eigenvectors: prior to reaching the
critical µ value, the eigenvector |sk(µ)⟩ of the eigenvalue sk(µ) is |sk(µ)⟩ ≈ |v⟩, while the eigenvector |sk+1(µ)⟩
associated with sk+1(µ) is |sk+1(µ)⟩ ≈ |dk+1⟩. Passing the critical µ value, the eigenvectors switch: the
eigenvector |sk(µ)⟩ belonging to the eigenvalue sk(µ) transitions to |sk(µ)⟩ ≈ |dk+1⟩, and the eigenvector
|sk+1(µ)⟩ belonging to the eigenvalue sk+1(µ) transitions to |sk+1(µ)⟩ ≈ |v⟩. The application to the
two-partite system AB is illustrated in figure 6, where we can read off two observations on the dynamics of
the entanglement in system AB:

Observation 1. Let us consider the edge case where |v⟩ is chosen to be almost parallel to the unentangled
eigenstate of the initial Hamiltonian; i.e. |v⟩ ≈ |ai⟩

∣∣bj〉. Suppose the system is initialized in an unentangled
eigenstate |ψ(0)⟩= |ak⟩

∣∣bp〉 of the initial Hamiltonian D. As µ is adiabatically increased, this state evolves
into |ψ(µ)⟩ ≈ |v⟩, which is also a product state. Eventually, the system encounters an avoided level crossing at
the critical value µcritical. Precisely at this value, the system’s state becomes a superposition of |v⟩ ≈ |ai⟩

∣∣bj〉 and
another product eigenstate, say |ak+1⟩

∣∣bp〉, associated with the nearby avoided eigenvalue. Therefore, at µcritical
the state of the system is an entangled state. This otherwise temporary entanglement can be made permanent
by freezing the value of µ at the critical value.

6
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Figure 7. Example of an edge case in the three-partite system ÃAB. As two eigenvalues avoid a level crossing, they swap their
eigenvectors, which can induce changes to the entanglement in system ÃAB.

Observation 2. In edge cases, any initially unentangled state that is not an energy eigenstate can become
entangled during an avoided level crossing, and this entanglement persists after the avoided level crossing.
Assume, e.g. that system ABwas prepared in an unentangled state that is a superposition of energy eigenstates,
such as the state (|ak⟩+ |am⟩)|bp⟩. During the time evolution, at a critical µ value, this state can become per-
manently entangled as, e.g. the state |ak⟩|bp⟩ can be swapped, for example, for the state |ak⟩|bp+1⟩, so that after
the avoided level crossing our system is in the entangled state |ak⟩|bp+1⟩+ |am⟩|bp⟩. Unlike in the case of obser-
vation 1 above, here the newly generated entanglement between A and B persists for values of µ larger than the
critical µ. In this sense, entanglement between A and B can be said to be redistributed during an eigenvector
swap at an avoided level crossing.

2.3. Visualization of entanglement transfer in the tri-partite system ÃAB
Similarly, in the tripartite system ÃAB, let us consider initial Hamiltonians of the form D = HÃ ⊗ I⊗ I
+ I⊗HA ⊗ I + I⊗ I⊗HB and activate a projector though H(µ) = D+µ(I⊗ |v⟩⟨v|) which acts on the
Hilbert spaceHA ⊗HB. Similar to the two-partite case, the structure of the entanglement in the tri-partite
system ÃAB can only change when eigenvalues avoid crossing and thereby swap their eigenvectors. Again,
this is particularly clear in edge cases, as is illustrated in figure 7, where we can read off the basic dynamics of
the entanglement in system ÃAB.

First, since the ancilla Ã does not participate in the interaction, we obtain analogs of Observations 1 and
2 for system AB, if the ancilla Ã is prepared unentangled. For example, since the result of any narrowly
avoided level crossing is that the two eigenvalues swap their eigenvectors, any unentangled eigenstate of D,
such as |sn+1(µ)⟩ ≈ |ãr⟩|ak⟩|bp⟩ ultimately evolves into another unentangled eigenstate of D, such as
|sn+1(µ)⟩ ≈ |ãr⟩|v⟩ and therefore no entanglement has been generated after an avoided level crossing. Except,
during the brief period when the swap occurs, i.e. close to a critical µ value, an initially unentangled
state such as here |sn+1(µ)⟩ ≈ |ãr⟩|ak⟩|bp⟩ will be a linear combination of the form: |sn+1(µ)⟩ ≈ α|ãr⟩
|ak⟩|bp⟩+β|ãr⟩|v⟩. We notice that if |v⟩ ≈ |ai⟩|bj⟩ with i ̸= k and j ̸= p, then AB will be entangled around the
critical µ value. As anticipated, since the ancilla is here a mere spectator, this matches observation 1 above for
the bipartite case. Clearly, also observation 2 for the bipartite system AB above has an immediate
generalization to the tripartite system, if the ancilla system Ã is chosen to be initially unentangled.

Finally, we analyze the fundamental processes in which an interaction induces a transfer of entanglement.
To this end, we assume that Ã and A are initially entangled and we use our findings above to study how

an interaction between A and B can turn the initial entanglement between Ã and A into entanglement
between Ã and either B or AB. Consider, for example, the initial state of the form

|ψ0⟩ :=
1√
2

(
|ãr⟩|ak⟩|bp⟩+ |ãs⟩|al⟩|bp⟩

)
(2)

with r ̸= s and k ̸= l. Here, systems Ã and A are entangled, and system B is unentangled. Then, during the
evolution, one of the two vectors on the RHS, say |ãr⟩|ak⟩|bp⟩ will be the first to be swapped for |v⟩ at some
critical µ value. After passing this critical µ value, the initial state |ψ0⟩ will therefore have adiabatically
evolved into:

|ψ1⟩ :=
1√
2

(
|ãr⟩|v⟩+ |ãs⟩|al⟩|bp⟩

)
(3)

7
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We can now easily read off, for example, that by choosing |v⟩ ≈ |al⟩|bq⟩ with q ̸= p, the state |ψ1⟩ possesses
entanglement only between Ã and B while A becoming unentangled:

|ψ1⟩ ≈
1√
2

(
|ãr⟩|al⟩|bq⟩+ |ãs⟩|al⟩|bp⟩

)
(4)

For this choice of |v⟩, the interaction between A and B, therefore, transferred the entanglement that A
initially possessed with Ã to B, while passing the critical µ value.

Similarly, it is clear that the choice of |v⟩ ≈ |at⟩|bq⟩ with t ̸= l and q ̸= p, transfers the entanglement that Ã
initially possessed with A to system AB, by yielding instead the tri-partite entangled state:

|ψ1⟩ ≈
1√
2

(
|ãr⟩|at⟩|bq⟩+ |ãs⟩|al⟩|bp⟩

)
(5)

For this choice of |v⟩, the interaction between A and B therefore transferred the entanglement that A initially
possessed with Ã to the system AB.

The adiabatic dynamics of entanglement in n-partite systems for large n can be analyzed similarly, and we
will use this fact in section 7 where we will apply these results to AQC.

2.4. Application to AQC for combinatorial optimization
These results can be applied to AQC, to address, for example, combinatorial optimization problems. In what
follows, we relate the entanglement generation and its subsequent loss to the hardness of an optimization
problem. In optimization, we seek min( f(x)) for x ∈ {0,1}n by searching for the ground state of a problem
Hamiltonian Hp =

∑
x f(x) |x⟩⟨x|. To this end, we analyze an AQC protocol that uses a schedule

H(t) =H0 +µ(t)Hp, where the coupling µ(t) increases monotonically. As µ(t) grows, terms µ(t)f(x) |x⟩⟨x|
corresponding to high-cost states |x⟩ dominate earlier. This effectively activates the projectors sequentially
from those of highest cost on down. The adiabatic evolution, therefore, forces the evolving ground state
|0(t)⟩ to become orthogonal first to the highest-cost basis states |x⟩ and the evolution then systematically
eliminates successively less and less poor candidate solutions.

At later stages of the adiabatic evolution, the ground state |0(t)⟩ is, therefore, a superposition of the
remaining low-cost candidate solutions {|xlow⟩}.

Interestingly, we can relate the amount of entanglement in such superpositions to the classical hardness
of the problem being solved. Consider a case where the energy landscape is classically hard in the sense that
low-energy configurations {|xlow⟩}, defined below some energy threshold, are typically separated by large
Hamming distances. A quantum state that superposes basis states with large Hamming distances typically
exhibits entanglement, since it does not factorize across qubit subsystems. For example, consider the case
where the instantaneous ground state |0(t)⟩ is a linear superposition of computational basis states with
pairwise Hamming distances of at most two:

|0(t)⟩= ac |000⟩+ ad |001⟩+ bc |010⟩+ bd |011⟩

This state factorizes completely as a product state:

|0(t)⟩= |0⟩⊗ (a |0⟩+ b |1⟩)⊗ (c |0⟩+ d |1⟩)

In contrast, if we use the same non-zero coefficients but superpose basis states that are more widely separated
in Hamming space, we obtain genuine tri-partite entanglement:

|0(t)⟩= ac |000⟩+ ad |111⟩+ bc |011⟩+ bd |001⟩

Due to the larger pairwise Hamming distances between the basis states, the superposition above cannot be
factorized, as all three subsystems are multipartite entangled. The most extreme case occurs when the
superposition involves basis states with the maximum pairwise Hamming distance, resulting in maximal
multipartite entanglement. A canonical example is the GHZ state, given by 1/

√
2(|000⟩+ |111⟩), which

exhibits tripartite entanglement and cannot be decomposed into a product across any bipartition. Such a
state represents two local minima, which are separated by a distance of 3. Hence, moving from one local
minima to another requires at least three local moves (bit flips) over higher-energy barriers. We see that large
Hamming distances between local minima imply classical hardness, as we need to traverse the energy
landscape over long distances and do more work to avoid being trapped in local minima. From the quantum
mechanics perspective, we get states that are multipartite entangled.

Generally, the poor factorizability directly implies that the intermediate ground state |0(t)⟩ possesses high
multipartite entanglement. Conversely, smoother landscapes (classically easier problems), where regions of

8
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low-energy states are nearby (short Hamming distances), result in intermediate states with lower
entanglement. Therefore, a key insight is that classical problem hardness, characterized by a rugged cost
landscape with large Hamming distance local minima, necessitates the development of significant temporary
multipartite entanglement in the instantaneous ground state |0(t)⟩ at intermediate stages of the AQC process.

Let us here recall that one usually chooses the initial state to be an equal superposition of all
computational basis states, which can be written as the tensor product of plus states. Since this initial state is
a product state, it is unentangled. Also, the final state, assuming it is unique, is unentangled. This implies
that, for optimization problems with local minima that possess large Hamming distances, the adiabatic
evolution must build up and then destroy a large peak of entanglement.

We have shown that all changes in entanglement occur at avoided level crossings, and that the
narrowness of these crossings determines the efficiency of these changes. This insight provides new tools for
exploring how the hardness of a problem, such as an optimization task, relates to the magnitude and
character of the entanglement peak during AQC, and how this peak, in turn, necessitates a slowdown due to
narrow avoided crossings.

3. Mathematical preparations

As motivated above, we consider a time-dependent Hamiltonian that acts on an N-dimensional Hilbert
spaceH and takes the form:

H(t) :=H0 + g(t)Hint (6)

Here, H0 and Hint are Hermitian operators acting onH. We refer to H(0) =H0 as the initial Hamiltonian,
and for some suitably chosen final time T> 0, we call H(T) the final Hamiltonian. The coupling function
g(t) is assumed to monotonically increase from g(0) = 0 to a final value g(T), slowly enough for the
evolution to be adiabatic. As anticipated above, we break down this problem into more manageable parts. To
this end, we invoke the spectral theorem and rewrite Hint as a weighted sum of rank one projectors,
Hint =

∑
kλk |vk⟩⟨vk|. Instead of adiabatically adding all of g(T)Hint simultaneously to H0, as in (6), we

adiabatically add the weighted projectors g(T)λk |vk⟩⟨vk| one by one to H0.
Each activation of a projector is described by a time-dependent Hamiltonian of the form:

H(t) := D+µ(t) |v⟩⟨v| (7)

Here, for a fixed index k, we define |v⟩⟨v| := |vk⟩⟨vk|. For the purpose of activating an individual projector, it
is convenient to denote the starting and the final time of the activation of this new projector by t= 0 and
t= tf, respectively. We choose µ(t) to be a function that monotonically runs from µ(0) = 0 to µ(tf) = g(T)λk
slowly enough for the evolution to be adiabatic. We now focus on the dynamics during the addition of an
individual projector.

Before we get to the main results, we present a useful lemma which shows that for any real value s, there is
an eigenstate |s⟩ of the Hamiltonian H(t) in (7) for which the eigenvalue nonperturbatively an explicit
expression can be given and for which s is the eigenvalue.

Lemma 1. Let H(t) in (7) be the Hamiltonian of a quantum system with a non-degenerate spectrum. Let |v⟩ be
an arbitrary generic vector and dk be the eigenvalues of D. For any eigenvalue s := s(µ(t)) ̸= dk of H(t), the
corresponding eigenstate |s⟩ is given by

|s⟩= γ (sI−D)−1 |v⟩ , (8)

where γ is a normalization constant defined as

γ =
1

∥(sI−D)−1 |v⟩∥
. (9)

The lemma states that the eigenstate |s⟩ can be explicitly expressed as a function of |v⟩, the initial
Hamiltonian D, and the eigenvalue s. The proof of this lemma and of the subsequent propositions in this
paper are in the appendices. The lemma can be combined with the adiabatic theorem [1, 3]:

Lemma 2. Let H(t) in (7) be the Hamiltonian of a quantum system whose spectrum is non-degenerate, and let
|v⟩ be arbitrary. Let u := t/tf ∈ [0,1] and µ̃(u) := µ(utf), then the rescaled version of H(t) is:

H̃(u) := D+ µ̃(u) |v⟩⟨v| (10)

9
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Assume that the system is initially in the n’th–level energy eigenstate |̃sn(0)⟩= |dn⟩ of H̃(0) = D. Suppose that it
undergoes adiabatic evolution until a final time tf, which is chosen in accordance with the condition of the
adiabatic theorem [3]:

tf ≫ max
u∈[0,1]

|⟨̃sm (u)|v⟩⟨v|̃sn (u)⟩dµ̃/du|
s̃nm (u)

2 , n ̸=m (11)

Here, s̃nm(u) = s̃n(u)− s̃m(u) and s̃k(u) is an eigenvalue of H̃(u). Then, the evolved state of the system at time tf
will in effect remain in the instantaneous eigenstate

∣∣sn(µ(tf))〉, that is∥∥U(tf) |dn⟩− ∣∣sn (µ(tf))〉∥∥≈ 0, (12)

where

U
(
tf
)
:= T exp

{
−i

ˆ tf

0
H(t)dt

}
, (13)

and T denotes the time-ordering operator. In the limit of tf →∞, we have the exact relation:

U
(
tf
)
|dn⟩=

∣∣sn (µ(tf))〉= γ
(
sn
(
µ
(
tf
))

I−D
)−1 |v⟩ (14)

The statements of lemma 2 can be easily derived by applying the adiabatic theorem in [3] to the result of
lemma 1.

In this paper, we always assume that tf is chosen sufficiently large to ensure that the time evolution
operator U(tf) evolves the initial eigenstate |dn⟩ into the eigenstate

∣∣sn(tf)〉 to any desired target accuracy, so
that, in effect, we can write U(tf) |dn⟩=

∣∣sn(tf)〉.
Remark. The reason for using the unitless variable u in condition (11) traces to the observation that tradi-
tional conditions for adiabaticity had missed the fact that exceptional non-adiabaticity can build up through
resonances from seemingly adiabatic oscillatory time dependence in the Hamiltonian, see [3]. The condition
that the Hamiltonian can be written as a function of the unitless time variable u excludes such oscillatory
behavior since it would set a new scale. This, in turn, renders condition (11) robust. For a detailed review,
see [5].

3.1. The relationship between the coupling strengthµ(tf) and the final eigenvalue s.
It would be desirable to be able to express the eigenvalues, sn(µ) of a Hamiltonian H(µ) = D+µ|v⟩⟨v| as an
explicit expression in radicals, e.g. by solving explicitly for the roots, sn(µ), of the characteristic polynomial
of H(µ). As Galois theory showed, this is impossible for Hilbert space dimensions larger than 4, see [14]. In
this section, we present a lemma, see [13], that describes a method to bypass this limitation by inverting the
problem, i.e. by calculating µ(s), and by then using the Lagrange inversion theorem to obtain the sn(µ) not in
terms of radicals but as a power series whose coefficients are all explicitly known.

We start by noticing that it is possible to give an explicit expression for µ as a function of the eigenvalue s
for all real s. Concretely, working in the eigenbasis {|dk⟩}N−1

k=0 of the initial Hamiltonian D, we have:

µ(s) =

(
N−1∑
k=0

|vk|2

s− dk

)−1

(15)

In the equation above, vk := ⟨v|dk⟩ and the dk are the eigenvalues of the initial Hamiltonian D.
Therefore, one can fix s and then use (15) to obtain the desired coupling strength µ so that H(µ) has s as

an eigenvalue.

Lemma 3. Let s be an arbitrary real number. Consider the Hamiltonian defined by H(s) = D+µ(s) |v⟩⟨v|,
where µ(s) is as in (15) and |v⟩ is arbitrary. Then, s is an eigenvalue of H(s).

Allowing s to change over time, we will, for simplicity, write H(t) =H(s(t)). Incorporating the principles
from lemmas 2 and 3, a comprehensive non-perturbative framework can be formulated for the
determination of final eigenstates and eigenvalues of a time-dependent Hamiltonian H(t). Initially, one
selects a real number s and employs lemma 3 to define the final Hamiltonian H(tf). Subsequently, lemma 1
provides the exact form of the final eigenstate associated with H(tf).

10
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Finally, we can use the Lagrange inversion theorem to obtain, see [13]:

sr (µ) = dr −
∞∑
n=1

µn

n

n−1∑
k1,...,kn=0∑n
i=1 ki=n−1

N∑
p1,...,pn=1

p1 ̸=r,...,pn ̸=r

n∏
i=1

|vpi |2 −
δki,0
N−1(

dr − dpi
)ki (16)

Recall that we start with H0 and then during the adiabatic evolution toward the final Hamiltonian
H0 + g(T)Hint, we adiabatically add the projectors µn|vn⟩⟨vn| one by one by dialing their prefactor µn from
µn = 0 to µn = g(T)λn. The exact result (16) now allows us to perform all these successive additions of
projectors explicitly, thereby nonperturbatively yielding the running eigenvectors and eigenvalues.

4. Transmission and preservation of entanglement in tripartite systems

In this section, our goal is to identify the elementary principles that govern entanglement transmission or
preservation under addition of the initial Hamiltonian D and the coupling term µ(t) |v⟩⟨v|. Therefore, we
investigate the dynamics of entanglement within a tri-partite system situated in the Hilbert space
HÃ ⊗HA ⊗HB. We assume here that system A is initially prepared entangled with an ancillary system Ã,
such that Ã purifies A. The system B is assumed to be initially pure and unentangled with both A and Ã.
Subjected to a time-dependent Hamiltonian as in (17), the composite pure system ÃAB then undergoes
adiabatic evolution while Ã remains inert. The interaction between A and B induced by the term µ(t) |v⟩⟨v|
can then not only entangle the systems A and B but can also transfer entanglement that A initially possessed
with Ã to B or AB. The setup is illustrated in figure 1. For example, Ã and Amight represent qubits in a
quantum processor, while B could describe another qubit of the processor or an environment.

We assume that the following Hamiltonian interaction governs the adiabatic evolution:

H(t) = I⊗HA ⊗ I + I⊗ I⊗HB +µ(t) I⊗ |v⟩⟨v| (17)

Here, HA and HB denote the Hamiltonians of systems A and B respectively. We define the initial Hamiltonian
D as D :=HA ⊗ I + I⊗HB. Subsequently, the total Hamiltonian in (17) simplifies to:

H(t) = I⊗D+µ(t) I⊗ |v⟩⟨v| (18)

For this system, let {|ai⟩} and {|bi⟩} represent the sets of eigenstates corresponding to systems A and B
respectively. Additionally, we introduce {|ãi⟩} as an arbitrary basis for the ancillary system Ã. We let the
system ÃA start in a pure state. For some fixed i and j, we define the state of ÃA to be

|ψÃA⟩= αii |ãi⟩ |ai⟩+αjj

∣∣ãj〉∣∣aj〉 , (19)

where αii and αjj are complex coefficients. We may assume, for example, an entangled state |ψÃA⟩ with
|αii|2 = |αjj|2 = 1/

√
2. Then the joint initial state of ÃAB is:

|ψÃAB⟩ =
(
αii |ãi⟩ |ai⟩+αjj

∣∣ãj〉∣∣aj〉) |b0⟩ (20)

Now, we are ready to establish the conditions for maximizing the transfer or preservation of
entanglement during the course of adiabatic evolution. That is, we show that for an appropriate choice of |v⟩
and µ(tf), it is possible to transmit entanglement in the sense that Ã’s initial entanglement with A turns into
entanglement of Ã with B, while A becomes pure and therefore disentangled from both Ã and B. Conversely,
we show how to reverse the entanglement transmission so that Ã is again entangled with A, and B returns to
being in a pure state.

Furthermore, we find that transferring entanglement is computationally expensive due to the need for a
slower rate of adiabatic evolution. As we will discuss in section 6, selecting the state |v⟩ to maximize
entanglement transfer leads to reduced energy gaps of the Hamiltonian in (17), which is important because
the minimum duration, tf, of the evolution is determined by the minimum energy gap, see, e.g. (11). We find
that highly efficient entanglement transfer necessitates a significantly prolonged evolution time.

Another interesting finding is that entanglement transfer and preservation are not continuous processes.
We show that entanglement relations between systems can abruptly reverse to their original state even if µ(tf)
and |v⟩ are changed in a continuous manner.

Let us first start with the trivial choice of |v⟩. Let |v⟩ be an eigenstate of the Hamiltonian D=HA ⊗ I+
I⊗HB. That is, |v⟩ =

∣∣ap〉 |bk⟩ for some fixed p and k. In this case, the initial Hamiltonian I⊗D commutes
with the interaction Hamiltonian µ(t)I⊗ |v⟩⟨v| and the final state |ψÃ ′A ′B ′⟩ only acquires relative phases:

|ψÃ ′A ′B ′⟩= αiiωii |ãi⟩ |ai⟩ |b0⟩+αjjωjj

∣∣ãj〉∣∣aj〉 |b0⟩ (21)
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where |ωii|, |ωjj| = 1 for some fixed i and j. Importantly, ÃA remains entangled and pure, and B is
unentangled and pure. Therefore, the entanglement structure remained unchanged. In this trivial case, we
see that |v⟩, being an eigenstate of D, cannot affect the entanglement characteristics of any of the systems.

It is reasonable to assume that |v⟩ that maximizes the transmission or preservation of entanglement must
be a linear combination of specific eigenstates of D. Indeed, this is the case. However, surprisingly, such |v⟩
must be arbitrarily close to exactly one of the eigenstates of D and yet not be equal to it. Let us use the
shorthand notation µtf := µ(tf) and define vkp as the coefficients of |v⟩ in the eigenbasis {|ak⟩

∣∣bp〉}kp. That is,
vkp :=

〈
v
∣∣akbp〉 . (22)

With this notation, we now present the following theorem, which provides a construction of the edge case |v⟩
discussed earlier.

Theorem 4. Let n= dimA and m= dimB. For some fixed indices i< j, suppose the eigenvalues of D are
ordered as

di0 < di1 < · · ·< dj0 < dj1. (23)

Let system ÃA be entangled and B be in a pure, unentangled state:

|ψÃAB⟩= αii |ãi⟩ |ai⟩ |b0⟩+αjj

∣∣ãj〉∣∣aj〉 |b0⟩ (24)

Fix an index ℓ⩾ 0 such that di0 ⩽ diℓ < dj0. For ϵ> 0, if |v⟩ is such that

vkp =

{
1− (nm− 1)ϵ2 for k= i,p= ℓ,

ϵ otherwise,
(25)

and

µtf ∈
(
dj0 − diℓ
|viℓ|2

,
dj1 − diℓ
|viℓ|2

)
. (26)

Then, as ϵ→ 0, the entanglement of the evolved system is such that Ã becomes entangled with B, and A becomes
pure and unentangled. Furthermore, if

µtf >
dj1 − diℓ
|viℓ|2

, (27)

then as ϵ→ 0, the entanglement of the evolved system is such that Ã becomes again entangled with A, and B
becomes again pure and unentangled.

The theorem, therefore, provides us with a construction of interaction Hamiltonians µ(tf) |v⟩⟨v| to
accomplish transfer or preservation of entanglement with the edge case |v⟩. Furthermore, the theorem
explicitly identifies the values of µ(tf) at which A transfers its entanglement with Ã to B, as detailed in (26). It
also specifies the precise values of µ(tf) required to revert the entanglement relationships back to their
original configuration.

We note that since the edge case |v⟩ in (25) has the dominant component viℓ ≈ 1 for ϵ≪ 1, it is close to
an eigenstate |ai⟩ |bℓ⟩ of the initial Hamiltonian D. However, |v⟩ significantly differs from |ai⟩ |bℓ⟩ in its effect
on the final system’s entanglement structure. We see that entanglement transfer or preservation is not
continuous relative to the change of |v⟩. For example, one might construct |v⟩ with sufficiently small ϵ and
some finite µtf such that Ã becomes entangled with B and A becomes pure and unentangled. However, if ϵ
reaches its limit 0, i.e. ϵ= 0, then |v⟩= |ai⟩ |bℓ⟩ and the structure of entanglement abruptly reverts to its
original state. This is because, as we have seen, eigenstates of D do not change the entanglement structure of
the initial system, i.e. A remains entangled with Ã and B remains pure and unentangled.

The construction of |v⟩ in theorem 7 enables maximal changes in entanglement and explicitly identifies
the values of µ at which these changes occur. While slight variations of this construction are possible, they
generally come at the cost of less transparent and significantly more cumbersome mathematical expressions.
Nevertheless, the core principles for the edge case scenario remain unchanged: |v⟩must have a dominant
component aligned with an eigenvector |d⟩ of the initial Hamiltonian D, satisfying ⟨v|d⟩ = 1−O(ϵ2). For
any other eigenvector |d ′⟩ of D, we must have ⟨v|d ′⟩ = O(ϵ), where ϵ≪ 1.
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5. Entanglement transfer/preservation induces structured eigenssystem dynamics

The dynamics of eigenvalues and associated eigenstates of H(tf), under the influence of µ(tf) |v⟩⟨v| as
constructed in theorem 4, play a crucial role in understanding entanglement transfer and preservation in
quantum systems. In this section, we explore these dynamics in detail, showing that each eigenstate of the
initial Hamiltonian D undergoes a three-stage adiabatic evolution.

Initially, in the first stage of the evolution, an eigenstate of D remains nearly static, exhibiting minimal
change. The second stage is marked by the eigenstate closely aligning with |v⟩, reflecting a significant shift in
its characteristics. Finally, in the third stage, the eigenstate transitions towards a neighboring higher energy
eigenstate. Similar behavior can be observed for the eigenvalues. Each eigenvalue undergoes exactly the same
three-stage evolution. In the first stage, an eigenvalue remains almost static. During the second stage, the
eigenvalue increases at a speed close to 1. Importantly, only one eigenvalue at a time has a velocity near 1
while the rest remain almost static. During the third stage, the eigenvalue approaches a higher energy
eigenvalue and slows down without ever crossing it. The dynamics of this behavior are illustrated in figure 3.
This three-stage progression elucidates the mechanisms behind the subtle shifts in eigenstate positions and
energies, providing a comprehensive understanding of how entanglement properties are influenced and
manipulated through the choice of µ(tf) |v⟩⟨v| in theorem 4.

The influence of positive semidefinite µ(tf) |v⟩⟨v| with an arbitrary |v⟩ is thoroughly documented in the
literature [13, 15]. Generally, the neighboring eigenvalues sk < sk+1 of H(tf) interlace with the neighboring
eigenvalues dk < dk+1 of D. This yields the interlacing inequality:

dk ⩽ sk ⩽ dk+1 ⩽ sk+1 (28)

As µtf increases from negative infinity to positive infinity, the eigenvalues of H(tf) increase monotonically.
Absence of orthogonality between |v⟩ and any eigenstate |dk⟩ of D ensures the prohibition of energy
level-crossings for all finite µtf . Conversely, if |v⟩ is orthogonal to a particular eigenstate

∣∣dj〉, then the
associated eigenvalue sj remains fixed, permitting potential level-crossings. This scenario has been previously
encountered in section 4; when |v⟩ coincided with an eigenvector of D. In this scenario, when µtf approaches
positive infinity, a single eigenvalue increases, sequentially crossing all higher energy levels. Furthermore, we
have seen that such |v⟩ does not change the entanglement structure for any values of µtf .

On the other hand, the optimal selection of |v⟩ in theorem 4 maximizes entanglement transmission or
preservation for finite values µtf , it also imposes a strict pattern in the evolution of eigenvalues sk and
eigenstates |sk⟩ of H(t). As per the formulation of |v⟩ in (25) with ϵ> 0 sufficiently small, no level-crossings
occur for all finite µtf due to the non-zero components vk = ⟨v|dk⟩⩾ ϵ with any eigenstate |dk⟩ of D.
Furthermore, considering the eigenvalue velocities total to unity [13, 15], at any moment, precisely one
eigenvalue exhibits a velocity of |1− (nm− 1)ϵ2|2 ≈ 1, with the rest advancing minimally with the maximum
velocity proportional to ϵ2 ≈ 0. Specifically, as µtf increases, a solitary eigenvalue sk ascends to the next larger
eigenvalue sk+1 at a velocity of |1− (nm− 1)ϵ2|2. Due to the eigenvalue sk ascending to the almost static
larger eigenvalue sk+1, the energy gap becomes narrower, yet no level-crossing is happening. The level-
crossing avoidance can be attributed to an eventual deceleration in eigenvalue velocity which changes from
|1− (nm− 1)ϵ2|2 to near zero, and the larger eigenvalue sk+1 acquiring the velocity of |1− (nm− 1)ϵ2|2 and
hence avoiding the crossing with the eigenvalue sk.

Consequently, we can categorize the behavior of each eigenvalue sk of H(t) and its corresponding
eigenvector into three distinct evolutionary phases, characterized by three specific intervals of µ(t). During
the initial interval I1 := (−∞,µ1), the eigenvalue sk is ϵ2–close to dk with the maximum velocity
proportional to ϵ2. In the subsequent interval I2 := (µ1,µ2), the eigenvalue sk experiences an increased
velocity of |1− (nm− 1)ϵ2|2, indicating a more rapid ascent. Finally, in the interval I3 := (µ2,+∞), the
eigenvalue sk is ϵ2–close to dk+1 and resumes back to a slower pace. These intervals collectively span nearly
the entire spectrum of the real line. This comprehensive coverage allows us to predict the eigenstate |sk⟩
associated with any given value of µ(t) within these intervals. This observation is formally presented in the
following theorem.

Theorem 5. Let N be the dimension of the Hilbert space that H(t) acts on and {dj}N−1
j=0 be the increasing

sequence of the eigenvalues of D.
Fix index i and let ϵ> 0. Suppose |v⟩ is a vector characterized by its components vj =

〈
v
∣∣dj〉 as follows:

vj =

{
1− (N− 1)ϵ2 if j = i

ϵ otherwise
(29)
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For k> i, if µtf lies within the interval (
−∞,

dk − di
|vi|2

)
, (30)

then the eigenstate |dk⟩ of D adiabatically evolves as

Utf |dk⟩ → |dk⟩ as ϵ→ 0. (31)

If µtf lies within the interval (
dk − di
|vi|2

,
dk+1 − di

|vi|2

)
, (32)

then

Utf |dk⟩ → |di⟩ as ϵ→ 0. (33)

If µtf lies within the interval (
dk+1 − di

|vi|2
,+∞

)
, (34)

then

Utf |dk⟩ → |dk+1⟩ as ϵ→ 0. (35)

The endpoints of the interval in (32) deserve special attention. These are the ‘critical points’ around
which eigenstate transitions are happening. For ϵ sufficiently small, consider the critical point
µk+1 := (dk+1 − di)/|vi|2 in (32). Slightly before this critical point, say at µk+1 −∆µ, the state |dk⟩ evolves
into |di⟩. However, right after the critical point at µk+1 +∆µ, the state |dk⟩ evolves into the next energy level
eigenstate |dk+1⟩, while the state |dk+1⟩ evolves into |di⟩ ≈ |v⟩. Essentially, in the limit of ϵ tending to zero,
this evolution behavior can be characterized as a swap: |dk⟩ and |dk+1⟩ swap places while µ(t) passes the
critical point. To emphasize this remarkable fact, we present an alternative theorem that focuses on the
eigenstate transitions around the critical points.

Theorem 6 (Alternative). Let {dj}N−1
j=0 be an increasing sequence of eigenvalues of D.

Fix index i and let ϵ ∈ (0,1). Suppose |v⟩ is a vector characterized by its components vj =
〈
v
∣∣dj〉 as follows:

vj =

{
1− (N− 1)ϵ2 if j = i

ϵ otherwise
(36)

For each k⩾ i, define µk+1 as:

µk+1 :=
dk+1 − di

|vi|2
(37)

Let U(t) be the adiabatic evolution operator of H(t). Then, in the limit as ϵ→ 0, the following transitions occur:

U(t(µk+1 −∆µ)) |dk⟩ → |di⟩ (38)

U(t(µk+1 +∆µ)) |dk⟩ → |dk+1⟩ (39)

U(t(µk+1 −∆µ)) |dk+1⟩ → |dk+1⟩ (40)

U(t(µk+1 +∆µ)) |dk+1⟩ → |di⟩ (41)

In the above,∆µ is chosen such that

0<∆µ <min{µk+2 −µk+1,µk+1 −µk} , (42)

where µk < µk+1 < µk+2.
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Theorem 5 and its alternative formulation theorem 6 illustrate explicit dynamics of eigenstate transitions
around the critical points µcritical ≡ µk. Both theorems can be further restated in an equivalent but succinct
statement which describes a swap of states around the critical points. To get an intuition for the upcoming
statements, it is useful to examine figure 5 where we see the mechanics of a swap. Specifically, for µ < µcritical,
the eigenstate |sk(µ)⟩ ≈ |v⟩, whereas |sk+1(µ)⟩ ≈ |dk+1⟩. However, for µ > µcritical, we have |sk(µ)⟩ ≈ |dk+1⟩
and |sk+1(µ)⟩ ≈ |v⟩.

Theorem 7 (eigenstates swap). Let dk+1 be an eigenvalue of D. Suppose that |v⟩ is constructed as in (36). Let
µk+1 and∆µ > 0 be the critical point and increment of µk+1 as described in (37) and (42), respectively. Then, in
the limit ϵ→ 0, we have the following relation:

|sk (µk+1 −∆µ)⟩= |v⟩ and |sk+1 (µk+1 −∆µ)⟩= |dk+1⟩
|sk (µk+1 +∆µ)⟩= |dk+1⟩ and |sk+1 (µk+1 +∆µ)⟩= |v⟩

Here, for the adiabatic evolution operator U(t(µ)) of H(t), we have:

|sk (µ)⟩ := U(t(µ)) |dk⟩ (43)

6. Maximum entanglement transfer is computationally expensive

In the context of entanglement transfer or preservation, the selection of the edge case |v⟩ as defined in (25)
plays a crucial role. While this choice maximizes the transfer or preservation of entanglement, it also leads to
the minimization of energy gaps within the Hamiltonian. Consequently, the evolution time tf, which
inversely correlates with the smallest energy gap according to (11), is significantly extended in scenarios of
nearly complete entanglement transfer.

This section provides a lower bound estimation for the energy gap between any two consecutive energy
levels. To achieve maximal entanglement transfer or preservation, the state |v⟩ is configured such that one of
its components equals 1 − (dimA · dimB − 1)ϵ2, while the remaining components are set to ϵ. The limit of
maximal entanglement corresponds to ϵ→ 0.

We will demonstrate that for sufficiently small ϵ> 0, the minimum energy gap gmin between any two
adjacent energy levels is at the very least proportional to ϵ2.

Theorem 8. Let |v⟩ be constructed as in (25). For index k, let sk(µ(t))< sk+1(µ(t)) be any two consecutive
eigenvalues of H(t). Then, there exists C0 > 0 such that to second order in ϵ, we have:

sk+1 (µ(t))− sk (µ(t))⩾ C0ϵ
2 for all t> 0 (44)

Theorem 8 highlights that the minimum energy gap gmin is directly influenced by the value of ϵ. This
discovery is pivotal in establishing a relationship between the time complexity of adiabatic computation and
the dynamics of entanglement transfer or preservation. Let |vϵ⟩ denote the edge-case vector constructed
in (25), and let |v⟩ denote an arbitrary vector. By combining the result of theorem 8 with the adiabaticity
condition given in (11), we obtain the following bound:

tf ≫ max
u∈[0,1]

∣∣∣ dµ̃du ⟨s̃m (u)|vϵ⟩⟨vϵ|s̃n (u)⟩∣∣∣
(C0ϵ2)

2 (45)

⩾ max
u∈[0,1]

∣∣∣ dµ̃du ⟨s̃m (u)|v⟩⟨v|s̃n (u)⟩∣∣∣
s̃nm (u)

2 , n ̸=m (46)

Thus, the edge-case choice |vϵ⟩ with ϵ≪ 1 not only optimizes entanglement transfer or preservation but
also increases the minimum required adiabatic evolution time. In particular, the right-hand side of (45)
provides an upper bound on the minimal evolution time over all Hamiltonians where |v⟩ is chosen
arbitrarily. That is, (45) upper bounds the standard adiabatic condition in (46) for arbitrary choices of |v⟩.
This establishes a lower bound on tf required for successful entanglement transfer or preservation. Given that
⟨s̃m(u)|vϵ⟩ = O(ϵ) and ⟨s̃n(u)|vϵ⟩ = 1−O(ϵ2) (or vice versa), the expression in (45) implies a scaling of
tf = O(1/ϵ3).

To conclude, we have shown that entanglement change, such as the transfer of entanglement, necessitates
a slowdown. This follows from the fact that entanglement changes are due to eigenvalues swapping their
eigenvectors as shown in theorems 5–7. The swaps occur at avoided energy level crossings. To achieve
complete swap and hence maximal entanglement transfer, the Hamiltonian’s energy gaps must be minimized
at these crossings. The minimum time required for an adiabatic evolution, however, is proportional to the
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square of the smallest energy gap. Therefore, a smaller gap, which is necessary for efficient entanglement
transfer, requires a significantly prolonged evolution time to maintain adiabaticity, thus slowing down the
computation.

It is important to note that the redistribution of entanglement and the associated slowdown in adiabatic
evolution depend solely on the narrowness of the avoided level crossings. This implies that it is immaterial
whether we activate and manipulate a single rank-one projector or multiple projectors simultaneously. For a
complete redistribution of entanglement to occur, two eigenvalues must approach one another within a
distance of order ϵ2, as implied by lemma 9. Therefore, the critical bottleneck remains the same: the need for
eigenvalue proximity at the scale of ϵ2, which governs both the extent of entanglement transfer and the
evolution time via the adiabatic condition.

We complete this section by recalling the interlacing inequalities delineated in (28), which we, for
convenience, restate below:

dk ⩽ sk ⩽ dk+1 ⩽ sk+1 (47)

Given the construction of |v⟩ that maximizes entanglement transfer or preservation, the eigenvalue sk
converges to either dk or dk+1 as ϵ tends to zero.

Lemma 9. Let |v⟩ be constructed as in (25) and suppose that for k⩾ i, we have

µ(t)>
dk+1 − di

|vi|2
. (48)

Then, there exists C1 > 0 such that

dk+1 − sk (µ(t))< C1ϵ
2. (49)

Consequently,

ϵ

dk+1 − sk (µ(t))
>

1

C1ϵ
. (50)

Furthermore, if

0⩽ µ(t)<
dk − di
|vi|2

, (51)

then there exists C2 ⩾ 0 such that

sk − dk ⩽ C2ϵ
2. (52)

The lemma above will be pivotal in understanding the following section, where we demonstrate the
entanglement transfer, preservation and orderly evolution of the eigenspectrum of H(t) with narrowing
eigengaps.

6.1. Qubits example
To elucidate the principles and develop intuition behind theorems 4 and 5, we analyze a model wherein the
systems Ã,A, and B are represented as qubits. Let D = HA ⊗ I + I⊗HB be the initial Hamiltonian of systems
A and B. Suppose D is a 4× 4 matrix with distinct, positive eigenvalues:

d00 = 5,d01 = 10,d10 = 12,d11 = 17 (53)

Working in the eigenbasis {|ak⟩
∣∣bp〉}kp of D, we let the initial state of the composite system be

|ψÃAB⟩= α00 |ã0⟩ |a0⟩ |b0⟩+α11 |ã1⟩ |a1⟩ |b0⟩ , (54)

where |α00|= |α11|, and {|ãk⟩} is an arbitrary basis of Ã. Note that Ã and A are maximally entangled and B is
unentangled and pure. Selecting |v⟩ in accordance with (25) and setting ϵ= 0.02 yields:

|v⟩=
(
1− (nm− 1)ϵ2

)
|a0⟩ |b0⟩+ ϵ

∑
kp̸=00

|ak⟩
∣∣bp〉 (55)

16



Quantum Sci. Technol. 10 (2025) 045054 E Gabbassov and A Kempf

Figure 8. The generic dynamics of eigenvalues of Hv′ (t) (top) vs. the edge case dynamics of Hv(t) (bottom).

We remark that |v⟩ has a dominant component

v00 = 1− (nm− 1)ϵ2

= 1− (2× 2− 1)× 0.022 ≈ 0.9988. (56)

For comparative analysis, we introduce another state |v ′⟩ constituted by random, non-zero coefficients,
normalized to unity.

This establishes two scenarios: one where |v ′⟩ is arbitrarily selected, and a second where |v⟩ is an edge
case adhering to theorem 4. The respective Hamiltonians for each scenario are:

Hv′ (t) = I⊗D+µ(t) I⊗ |v ′⟩⟨v ′|
Hv (t) = I⊗D+µ(t) I⊗ |v⟩⟨v| (57)

In figure 8, we present the evolution of the energy spectra as a function of the coupling parameter µ(t) for
both outlined scenarios. Upon qualitative analysis, it is observed that the eigenvalues of Hv′(t) ascend at
various velocities, with various energy gaps. Conversely, the eigenvalues of Hv(t)manifest a highly ordered
progression. Specifically, for any given value of µ(t), a solitary eigenvalue ascends at a velocity of |v00|2 ≈ 1,
while other eigenvalues progress at a rate near zero. As was mentioned before, this distinct dynamical pattern
adheres to the conservation of eigenvalue velocities (all velocities add to unity). Importantly, we see that
energy gaps become narrower, yet no level-crossings are happening.

The systematic progression of eigenvalues associated with Hv(t) facilitates an intuitive characterization of
the time evolution of the state |ψÃAB⟩ in (54). Let I⊗U(tf) denote the adiabatic evolution operator
prescribed by the Hamiltonian Hv(t). Then the final evolved state is:

|ψÃ ′A ′B ′⟩= α00 |ã0⟩U
(
tf
)
|a0⟩ |b0⟩

+α11 |ã1⟩U
(
tf
)
|a1⟩ |b0⟩ (58)

Let us consider the first term U(tf) |a0⟩ |b0⟩ of the equation above. Applying lemma 1 and recalling theorem 5
we deduce that

U
(
tf
)
|a0⟩ |b0⟩= η00γ00 (s00I−D)−1 |v⟩

= η00γ00

(
v00

s00 − d00
|a0⟩ |b0⟩+

ϵ

s00 − d01
|a0⟩ |b1⟩

)
+O(ϵ) , (59)

where η00 is a dynamical phase. From the bottom subplot of figure 8, we see that on the interval
I1 := (5.02,+∞), the lowest eigenvalue s00 converges to the eigenvalue d01 = 10 of D. Indeed, by lemma 9,
the coefficient ϵ/(s00 − d01)≈ 1/ϵ is a large number that dominates other coefficients. Hence,

U
(
tf
)
|a0⟩ |b0⟩ ≈ η00 |a0⟩ |b1⟩ . (60)
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Let us now examine the evolution of the second term U(tf) |a1⟩ |b0⟩ of the equation in (58). Consider the
interval I2 := (7.03,12.06) which can be computed using eigenvalues of D and (26) in theorem 4. Then for
µtf in I2, by lemma 1, we have:

U
(
tf
)
|a1⟩ |b0⟩= η10γ10 (s10I−D)−1 |v⟩ (61)

Since on the interval I2, the eigenvalue s10 is not close to any of the eigenvalues and the coefficient
v00 ≈ 0.9988 (56) of |a0⟩ |b0⟩ dominates, we have:

U
(
tf
)
|a1⟩ |b0⟩= η10γ10 (s10I−D)−1 |v⟩

= η10γ10

 v00
s10 − d00

|a0⟩ |b0⟩+
∑
kp̸=00

ϵ

s10 − dkp
|ak⟩

∣∣bp〉


= η10γ10
v00

s10 − d00
|a0⟩ |b0⟩+O(ϵ)

Therefore, we have:

U
(
tf
)
|a1⟩ |b0⟩ ≈ η10 |a0⟩ |b0⟩ ≈ η10 |v⟩ (62)

Substituting the results in (60) and (62) into the final state in (58), we get:

|ψÃ ′A ′B ′⟩ ≈ α00η00 |ã0⟩ |a0⟩ |b1⟩+α11η10 |ã1⟩ |a0⟩ |b0⟩ (63)

We immediately see that |a0⟩ can be factored out. Therefore, the system A′ is disentangled and pure, whereas
system Ã ′ and B′ are maximally entangled. Hence, for µtf ∈ I2 and the choice of |v⟩ in (55), we achieved
maximum transfer of entanglement.

A similar analysis on the interval I3 := (12.06,+∞) which is computed according to (27) in theorem 4
shows that the entanglement between Ã ′ and A′ is reverted back, while B′ becomes disentangled and pure. To
see this, we inspect the bottom subplot of figure 8 and note that on the interval I3, we have s00 and s10 being
close to d01 = 10 and d11 = 17 respectively. Hence:

U
(
tf
)
|a0⟩ |b0⟩ ≈ η00 |a0⟩ |b1⟩ ,

U
(
tf
)
|a1⟩ |b0⟩ ≈ η10 |a1⟩ |b1⟩ (64)

Therefore, the final state is:

|ψÃ ′A ′B ′⟩ ≈ α00η00 |ã0⟩ |a0⟩ |b1⟩+α11η10 |ã1⟩ |a1⟩ |b1⟩ (65)

We readily see that |b1⟩ can be factored out, and Ã ′ and A′ are maximally entangled. That is, the original
entanglement is maximally preserved.

This example illustrates the complex yet ordered nature of adiabatic state evolution and its implications
for the entanglement characteristics of a quantum system. From knowledge of the eigenvalues of the matrix
D, one can compute specific intervals using (32) for the coupling parameter µtf where entanglement transfer
or preservation occurs.

6.2. Construction of pathological hamiltonians using edge cases
In this section, we demonstrate how edge cases can be utilized to construct a highly pathological interaction
Hamiltonian Hint. Specifically, we will construct Hint that features narrowly avoided level crossings that are
clustered within a short time interval. This structure is designed to promote a cascade of undesirable diabatic
transitions across the energy spectrum. Consequently, a system initialized in the ground state is highly likely
to evolve to the highest energy state, representing a worst-case scenario and a complete loss of adiabatic
control. Our construction begins with a 4× 4 initial Hamiltonian D with eigenvectors {|dk⟩}4k=1. Let the
adiabatic schedule be a linear function g(t) = t where t ∈ [0,1]. Let us construct four edge cases using
theorem 4. For, k= 1, . . . ,4 and ϵ≪ 1, the edge cases are:

|vk⟩=
(
1− 3ϵ2

)
|dk⟩+ ϵ

4∑
j=1,j ̸=k

∣∣dj〉 (66)
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Figure 9. The dynamics of eigenvalues of the total Hamiltonian H(t) comprised of edge cases. The spectrum is comprised of
extremely narrow avoided level crossings, which are tightly clustered over a short time interval. The colored lines represent
trajectories of eigenvalues of H(t), while the horizontal gray lines represent eigenvalues of the initial Hamiltonian D.

Let us now define Hint to be comprised of all |vk⟩ as follows:

Hint =
∑
k=1

λk|vk⟩⟨vk| (67)

Here, the parameters λk denote the eigenvalues of Hint. One can choose λk to shape the trajectories of
eigenvalues of the total Hamiltonian H(t) := D+ tHint without affecting the narrowness of the avoided level
crossings. The trajectories of eigenvalues of H(t) are illustrated in figure 9. There, we have chosen
λ= (70,−65,−55,−50) and ϵ= 10−1. The figure clearly reveals a cluster of extremely narrow avoided level
crossings confined to a short time interval.

7. Application to AQC for combinatorial optimization

The framework developed in this paper, analyzing entanglement dynamics through sequential projector
activations and eigenvector swaps at avoided crossings, offers new perspectives on AQC, particularly on its
application to combinatorial optimization [4, 5].

7.1. Adiabatic evolution and problem hardness
In combinatorial optimization, the aim is to find an n-tuple, x, of binary variables, x ∈ {0,1}n, which
minimizes a cost function f (x). We choose f to be positive with the absolute minimum set to 0.

In AQC, the problem is translated into finding the ground state of a problem Hamiltonian Hp. The
eigenstates of Hp are the computational basis states |x⟩ and their eigenvalues f (x) are the value of the cost
function for x.

The simplest AQC protocol adiabatically evolves the system from an easily-prepared ground state of a

suitably chosen initial Hamiltonian H0 (e.g. H0 = −
∑

i σ
(i)
x ) to the desired ground state of Hp using a

time-dependent Hamiltonian, with the schedule Hsimple(s) = (1− s)H0 + sHp, where s = t/T runs from 0
to 1.

For our purposes, it will be more convenient to adopt the equivalent schedule obtained by rescaling the
Hamiltonian by 1/(1− s). We then obtain H(t) = H0 + µ(t)Hp, where µ(t) = 1/(T/t− 1) and where t
runs from just above 0 to just under T. Any other schedule µ(t) could be adopted in which the coupling µ(t)
increases monotonically and adiabatically from µ(0) = 0 towards infinity. For later reference, we here already
mention that, as was shown in [13], in this limit the eigenvalues, Ei(µ), of H(µ) obey limµ→∞Ei(µ) = E∗i
where the E∗i were identified with the interlacing eigenvalues of the Cauchy interlacing theorem.

If µ(t) grows adiabatically, the adiabatic theorem guarantees that the ground state |0(t)⟩ of H(t)
adiabatically evolves towards the ground state of Hp. We can analyze this schedule using the methods of this
paper by considering the spectral decomposition Hp =

∑
x f(x) |x⟩⟨x|. The Hamiltonian becomes

H(t) =H0 +
∑

xµ(t)f(x) |x⟩⟨x|. As µ(t) increases, the terms µ(t)f(x) |x⟩⟨x| associated with larger costs f (x)
become dominant earlier. This process implicitly implements the sequential activation of projectors
discussed in section 1.2, by ‘activating’ first the projector corresponding to the highest cost candidate
solution and then successively activating the projectors of candidate solutions of lower and lower cost.

As analyzed in [13] and discussed above, when a projector |v⟩⟨v| becomes activated, then if its prefactor,
say µ, is let go to infinity, the vector |v⟩ becomes an eigenvector of the total Hamiltonian.
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Figure 10. Ground state amplitudes |⟨i |0(t)⟩| in the 16-dimensional computational basis i = 0, . . . ,15 at four time slices
(t0, t1, t2, tf). As t increases, amplitudes on higher-energy states i> 0 are suppressed, and the final state becomes concentrated on
the ground state, |0000⟩. Note that at t0 the initial state is a product state—a uniform superposition of all bitstrings which can be
written as |+⟩⊗4. The final state, at tf, is also a product state, which is a single bitstring representing the optimal solution.

Let us now apply this to AQC. We begin by considering the activation of any one of the projectors, say
|x⟩⟨x|. When the prefactor µ(t)f(x) of the projector |x⟩⟨x| eventually becomes very large, the computational
basis state |x⟩ gets closer and closer to being an eigenstate of the total HamiltonianH(t). This also means that
all the other instantaneous eigenstates of H(t) become orthogonal to the computational basis state |x⟩.
Crucially, this means that with each of the successive activations of a projector |x⟩⟨x|, the instantaneous
ground state |0(t)⟩ of H(t) becomes orthogonal to that computational basis state |x⟩.

Consequently, as µ(t) increases, |0(t)⟩ becomes progressively orthogonal to the computational basis
states |x⟩, starting with those of the highest costs f (x). In effect, the AQC process systematically rules out the
energetically highest, i.e. the worst candidate solution first, then the next worst, and so on, guiding the
system towards the true ground state |xGS⟩ of Hp. Its eigenvalue, f(xGS), is by construction zero, and therefore
the ground state’s projector has no effect.

In figure 10, we illustrate the dynamics of the evolving ground state |0(t)⟩ for an example Hamiltonian
Hp where we solve min f(x) over x ∈ {0,1}4. The plots show the evolution of the magnitude of the
amplitudes cx(t) of the ground state |0(t)⟩=

∑
x cx(t) |x⟩ of the Hamiltonian H(t) =H0 +µ(t)

∑
x f(x) |x⟩⟨x|.

Each integer y on the horizontal axis encodes a bitstring, e.g. y= 0≡ |0000⟩, y= 15≡ |1111⟩. By design, we
have f(y)< f(y+ 1). Hence, the optimum solution is |0000⟩. At t0, the ground state is a uniform
superposition of all candidate solution states, and it is a product state. As µ(t) increases, projectors f(x) |x⟩⟨x|
with successively smaller and smaller cost f (x) are activated. Each activation of a projector |x⟩⟨x| rotates the
ground state |0(t)⟩ to become orthogonal to |x⟩, i.e. suppressing cx(t). Indeed, we see that already at t1, the
highest cost candidates have near-zero amplitudes. As we will discuss below, the amount of entanglement in
the ground state |0(t)⟩ at such an intermediate time directly depends on the size of the Hamming distances
between the candidate states that are left in the ground state. By time tf, the ground state is essentially the
product state |0000⟩ which minimizes f (x).

7.2. Entanglement as a resource for hard problems
We can now shed new light on the relation between the hardness of, for example, a classical problem of
combinatorial optimization and the amount of entanglement that arises in the corresponding AQC.
Consider an intermediate stage of the quantum computation, where µ(t) is large enough that H(t) is in large
part dominated by projectors from Hp, but not so large that the instantaneous ground state |0(t)⟩ is already
essentially the ground state of Hp. At this stage, |0(t)⟩ is primarily a superposition of low-cost computational
basis states {|xlow⟩} which are candidates for the optimal solution.

The structure of the optimization problem landscape dictates the nature of this superposition:

• Rugged landscape (classically hard) implies more entanglement: If a set, L, of low-cost candidate solu-
tions are separated by large Hamming distances, they represent distinct potential solutions corresponding
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to different local minima in the classical cost function. The ground state

|0(t)⟩=
∑
x∈L

cx (t) |x⟩ (68)

is then a superposition of basis states of large Hamming distance. Such a superposition is generally less
factorizable across qubit subsystems, implying a higher degree of multipartite entanglement in |0(t)⟩.

• Smooth landscape (classically easier), implies less entanglement: If the low-cost candidates are clustered
together with small Hamming distances, they represent similar potential solutions. The ground state |0(t)⟩
is a superposition of ‘nearby’ basis states. These states share many qubit states (e.g. |000. . .0⟩ and |100. . .0⟩
share all but the first qubit), allowing for greater factorizability and implying lower multipartite entangle-
ment in |0(t)⟩.

This leads to a crucial insight: classical hardness of a combinatorial optimization problem, in the sense of a
rugged cost landscape with low-cost states that are distant in Hamming distance, necessitates that the AQC
ground state, |0(t)⟩, traverses states with high multipartite entanglement. The typical AQC process starts
with an unentangled ground state of H0, develops an ‘entanglement peak’ during the intermediate stages,
and finally converges to a product state of Hp, if the global minimum is unique, or possibly into an entangled
state if the ground state of Hp is degenerate. We conclude that the magnitude of this entanglement peak
directly correlates with the classical difficulty of the problem, since large Hamming distances directly
translate into large multi-partite entanglement.

8. Non-perturbative measures of entanglement and coherent information

In this section, we focus on quantifying entanglement transfer or preservation in cases where the interaction
term |v⟩⟨v| is chosen arbitrarily. As previously discussed in section 6.1 and illustrated in the top subplot of
figure 8, an arbitrary selection of |v⟩ results in a complex and unordered eigenspectrum dynamics inH(t). As
a result, this leads to only partial entanglement transfer or preservation. To accurately assess these effects, we
introduce a series of non-perturbative equations. These equations serve as a generalization of the previously
presented results.

Our first inquiry centers on quantifying the residual entanglement within ÃA following its interaction
with B during the course of adiabatic evolution, as governed by the Hamiltonian outlined in (17). Our
second inquiry focuses on quantifying the entanglement transfer from A to B, also following the course of
the adiabatic evolution. For the first inquiry, we will work with the direct channel from A to the adiabatically
evolved A′. For the second inquiry, we will work with a complementary channel from A to the adiabatically
evolved B′. We denote the direct and complementary channels as A→ A ′ and A→ B ′, respectively.

A quantum channel’s quantum capacity, i.e. its ability to transmit entanglement, is usually defined
through an optimization over the so-called coherent information [16], for parallel uses of the channel with
entangled input allowed. The coherent information for the channel A→ A ′, the so-called direct channel,
reads:

Id = S(A ′)− S
((

ÃA
) ′)

(69)

The coherent information for the complementary channel A→ B ′, reads:

Ic = S(B ′)− S
((

ÃB
) ′)

(70)

Here, S(·) denotes the von Neumann entropy, and its argument denotes a subsystem for which the entropy is
computed. Essentially, the coherent information compares joint and marginal von Neumann entropies and
finding it positive proves the existence of entanglement. The von Neumann entropy is entanglement
monotone if the total system is in a pure state, but its calculation requires the diagonalization of the density
operator. This is where the generalization to α-Rényi entropy proves useful. Defined for a positive real
number α ̸= 1 as

Sα (ρ) :=
1

1−α
logTr(ρα) . (71)

The α-Rényi entropy encompasses the von Neumann entropy as a special case when α approaches 1.
Importantly, the 2-Rényi entropy S2(ρ) =− logTr(ρ2) is directly related to the easy-to-calculate purity
Tr(ρ2) of a state, which does not require diagonalization of the density operator.
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Furthermore, recent work has shown that comparing purities of combined and marginal systems tends to
be significantly more effective than using von Neumann entropies for witnessing entanglement [17].
Motivated by this insight, and the ease of obtaining explicit analytical expressions for 2-Rényi entropy, we
introduce the concept of purity-based coherent information.

This alternative formulation for the direct channel A→ A ′ mirrors the conventional definition as given
in (69) and is expressed as:

PId := P
((

ÃA
) ′)− P(A ′) (72)

Similarly, the purity-based coherent information for the complementary channel A→ B ′ is defined as:

PIc = P
((

ÃB
) ′)− P(B ′) (73)

Just as coherent information, purity-based coherent information, when positive, indicates the presence of
quantum correlations between the subsystems. In contrast to the von Neumann entropy, which requires
diagonalization of the density matrix, purities can be computed much more easily, analytically or determined
empirically by creating interference between two identical instances of the quantum system [18, 19].

Let us briefly examine a couple of trivial scenarios to illuminate the implications of (72). Assume that
after the adiabatic interaction, (ÃA) ′ is in a pure, maximally entangled state. Under this condition, the
subsystem A′ is maximally mixed. In other words, P((ÃA) ′) = 1 and P(A ′)< 1. This leads to the result that
PId > 0, affirming the statement that (ÃA) ′ features entanglement. In a complementary manner, if PId > 0
and (ÃA) ′ is found to be in a pure state, we can once again deduce that (ÃA) ′ is indeed entangled. Generally,
whenever 1⩾ P((AA) ′)> P(A ′) it is always possible to infer that (ÃA) ′ features entanglement [17].

It is straightforward to transform the equations above into the 2-Rényi-coherent information. First, we
take the negative logarithms of P((ÃA) ′) and P(A ′) in (72). This yields the conditional Rényi entropy
S2(Ã ′|A ′). Then, we multiply both sides of the equation by the negative one to get to the definition of
coherent information. Therefore, the 2-Rényi-coherent information for the direct channel A→ A ′ is defined
as follows:

RId := logP
((

ÃA
) ′)− logP(A ′)

= S2 (A
′)− S2

((
ÃA
) ′)

(74)

Similarly, we define the 2-Rényi-coherent information for the complementary channel A→ B ′ as:

RIc := logP
((

ÃB
) ′)− logP(B ′)

= S2 (B
′)− S2

((
ÃB
) ′)

(75)

Given the monotonic behavior of the logarithm function, it can be readily inferred that a positive value for
RId serves as a witness for quantum correlations such as entanglement in (ÃA) ′. This leads us to establish the
following equivalence relation

P
((

ÃA
) ′)

> P(A ′) ⇐⇒ S2 (A
′)> S2

((
ÃA
) ′)

,

or equivalently,

RId > 0 ⇐⇒ PId > 0.

Similarly, we can show that

RIc > 0 ⇐⇒ PIc > 0. (76)

In light of this equivalence, our subsequent analysis will focus on purities and PId with PIc, which offer the
advantage of yielding more straightforward and transparent mathematical expressions. The next section
presents the analytical non-perturbative expression for computing (72) and (74).
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8.1. Coherent information of direct and complementary channels
In this section, we derive analytical expressions for the purity-based coherent information of the direct
channel A→ A ′ and complementary channel A→ B ′ after the adiabatic interaction of A and B, as governed
by the Hamiltonian outlined in (17) where the interaction term |v⟩⟨v| is arbitrary. Throughout this section,
let us assume that the system ÃA is initialized in a pure entangled state while system B starts as a pure and
unentangled state. Under these premises, we derive several theorems and corollaries that characterize the
evolution of entanglement from its initial value to arbitrary subsequent values.

We let the system ÃA start in a pure state and choose an arbitrary basis {|ãk⟩} for the Hilbert spaceHÃ of
the system Ã. For some fixed i and j, we define the state of ÃA to be

|ψÃA⟩= αii |ãi⟩ |ai⟩+αjj

∣∣ãj〉∣∣aj〉 , (77)

where αii and αjj are complex coefficients. We may assume that |αii|2 = |αjj|2, or in other words, the initial
state |ψÃA⟩ starts out entangled. Then the joint initial state of ÃAB is:

|ψÃAB⟩= αii |ãi⟩ |ai⟩ |b0⟩+αjj

∣∣ãj〉∣∣aj〉 |b0⟩ (78)

Since |ai⟩ and |b0⟩ are eigenstates of the initial Hamiltonian D, by lemma 1, the adiabatically evolved state is

|ψÃ ′A ′B ′⟩= αii |ãi⟩U
(
tf
)
(|ai⟩ |b0⟩)+αjj

∣∣ãj〉U(tf)(∣∣aj〉 |b0⟩) (79)

= αiiηi0 |ãi⟩ |si0⟩+αjjηj0
∣∣ãj〉∣∣sj0〉 , (80)

where ηi0 and ηj0 are dynamical phases. We show that the purity-based coherent information of the direct
channel A→ A ′ can be computed as follows.

Theorem 10. Consider a tripartite quantum system ÃAB initially prepared in a state described by (78). Assume
that the system undergoes adiabatic evolution according to the Hamiltonian H(t), as defined by (17) with |v⟩⟨v|
being arbitrary. Then the purity-based coherent information for the direct channel A→ A ′ is given by

PId = νTr
[
TrB
[∣∣si0〉〈sj0∣∣]TrB [∣∣sj0〉〈si0∣∣]]− νTr

[
TrB [|si0⟩⟨si0|]TrB

[∣∣sj0〉〈sj0∣∣]] , (81)

where ν = 2|αii|2|αjj|2.

Similarly, the purity-based coherent information of the complementary channel A→ B ′ is given by the
following theorem.

Theorem 11. Under the assumptions stated in theorem 10, the purity-based coherent information for the
complementary channel A→ B ′ is given by

PIc = νTr
[
TrA
[∣∣si0〉〈sj0∣∣]TrA [∣∣sj0〉〈si0∣∣]]

− νTr
[
TrA [|si0⟩⟨si0|]TrA

[∣∣sj0〉〈sj0∣∣]] , (82)

where ν = 2|αii|2|αjj|2.

We conclude this section by presenting two important lemmas that are used to derive explicit formulas
for the aforementioned coherent information measures in theorems 10 and 11. Given the relation in lemma
1, we have:

|s⟩= γ (sI−D)−1 |v⟩ (83)

Then, we can explicitly compute the purity of the reduced density matrix of |s⟩⟨s|.

Lemma 12. Let ρAB := |s⟩⟨s| and ρA := TrB [ρAB], then the purity of ρA is given by

P(ρA) = γ4
∑
ijkp

vij(
s− dij

) v∗kj(
s− dkj

) vkp(
s− dkp

) v∗ip(
s− dip

) , (84)

where vij =
〈
v
∣∣ai,bj〉 is a coefficient matrix of |v⟩ in the eigenbasis {|ai⟩

∣∣bj〉}ij of D and

γ =

∑
ij

∣∣∣∣ vij
s− dij

∣∣∣∣2
−1/2

. (85)
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We have presented a non-perturbative, explicit formula for calculating the purity of a reduced density
matrix corresponding to the eigenstates of the final Hamiltonian H(tf). Below, we introduce a lemma, which
is a generalization of lemma 12. This lemma is instrumental in deriving explicit equations in
theorems 10 and 11.

Lemma 13. Let |s⟩, |s ′⟩, |s ′ ′⟩ and |s ′ ′ ′⟩ be eigenstates defined as in (83). Then the following holds:

Tr [TrB [|s⟩⟨s ′|]TrB [|s ′ ′⟩⟨s ′ ′ ′|]] = γγ ′γ ′ ′γ ′ ′ ′
∑
ijkp

vij(
s− dij

) v∗kj(
s ′ − dkj

) vkp(
s ′ ′ − dkp

) v∗ip(
s ′ ′ ′ − dip

) (86)

Therefore, whenever s= s ′, s ′ ′, s ′ ′ ′, the equation in (86) becomes P(ρA) in (84). Now, using lemmas 12
or 13 it is straightforward to derive explicit equations for computing the quantities Tr[TrB[

∣∣si0〉〈sj0∣∣]] and
Tr[TrB[|si0⟩⟨si0|]] that appear in theorems 10 and 11. This, in turn, yields explicit non-perturbative equations
for purity-based coherent information PId and PIc.

8.2. Maximum andminimum of coherent information
In this section, we show that the construction of the edge case |v⟩ in theorem 4 that accomplishes
entanglement transfer or preservation is just a special case of theorems 10 and 11 that maximizes/minimizes
PId and PIc.

We commence by examining the initial quantum state specified by equation (78), with the coefficients αii

and αjj each set to 1/
√
2. A straightforward analysis reveals that initially (at µ= 0), the coherent information

of the direct quantum channel from A to itself stands at the maximum PIdinit = 1/2. Concurrently, the initial
coherent information associated with the complementary channel from A to B is at its minimum
PIcinit =−1/2. Given that PIdinit is positive, it is inferred that the system ÃA is entangled, a fact that is directly
observable from the initial state configuration. The derivation that PIdinit = 1/2 is achieved through the
application of theorem 10, under the assumption that the system has not undergone evolution, resulting in
|si0⟩= |ai⟩ |b0⟩ and

∣∣sj0〉= ∣∣aj〉 |b0⟩. Therefore, the calculation proceeds as follows:

PIdinit = νTr
[
TrB
[
|ai⟩ |b0⟩

〈
aj
∣∣⟨b0|]TrB [∣∣aj〉 |b0⟩⟨ai| ⟨b0|]]

− νTr
[
TrB [|ai⟩ |b0⟩⟨ai| ⟨b0|]TrB

[∣∣aj〉 |b0⟩〈aj∣∣⟨b0|]]
= νTr

[∣∣ai〉〈aj∣∣ ∣∣aj〉〈ai∣∣]− νTr
[
|ai⟩⟨ai|

∣∣aj〉〈aj∣∣]
= νTr [|ai⟩⟨ai|]
= 2|αii|2|αjj|2

=
2

4
=

1

2

The subsequent application of theorem 11 (where we trace over A) yields PIcinit =−1/2.
We now introduce an interaction term µ(t) |v⟩⟨v| to adiabatically evolve the initial state, where |v⟩ is

constructed as specified in theorem 4, and µ(tf) is selected based on the interval defined in equation (26).
Specifically, the dominant component of |v⟩, vi0, is set to 1− (nm− 1)ϵ2, and µ(tf) is chosen from the
interval ((dj0 − di0)/|vi0|2,(dj1 − di0)/|vi0|2).

By employing theorems 5 and 11, we demonstrate that the coherent information of the complementary
channel from A to B′, denoted as PIcfinal, tends to its maximum value 1/2 as ϵ tends to zero. This signifies that
the entanglement initially present between A and Ã has been almost completely transferred to B over the
course of adiabatic evolution. The calculation for the coherent information of the complementary channel
from A to B′ is as follows:

PIcfinal = νTr
[
TrA
[∣∣si0〉〈sj0∣∣]TrA [∣∣sj0〉〈si0∣∣]]− νTr

[
TrA [|si0⟩⟨si0|]TrA

[∣∣sj0〉〈sj0∣∣]] (87)

Due to the construction of |v⟩ and the choice of µ(tf), by theorem 5 we know that as ϵ→ 0, we have:

|si0⟩= U
(
tf
)
|ai⟩ |b0⟩ → |ai⟩ |b1⟩ ,∣∣sj0〉= U

(
tf
)∣∣aj〉 |b0⟩ → |ai⟩ |b0⟩

Therefore, in the limit of ϵ→ 0, we get:

PIcfinal = νTr
[
TrA[|ai⟩ |b1⟩⟨ai| ⟨b0|]TrA[|ai⟩ |b0⟩⟨ai| ⟨b1|]

− νTr
[
TrA[|ai⟩ |b1⟩⟨ai| ⟨b1|]TrA[|ai⟩ |b0⟩⟨ai| ⟨b0|]

]
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= νTr[|b1⟩⟨b0| |b0⟩⟨b1|]− νTr[|b1⟩⟨b1| |b0⟩⟨b0|]
= νTr[|b1⟩⟨b1|]
= 2|αii|2|αjj|2

=
2

4
=

1

2

Correspondingly, it can be shown that in the limit ϵ→ 0, we get PIdfinal =−1/2.
Hence, we establish that the value of coherent information of the complementary channel PIcfinal at the

end of the adiabatic evolution matches the initial maximum value of coherent information of the direct
channel PIdinit of the system prior to evolution, confirming the nearly complete transfer of entanglement from
A to B during the process.

9. Conclusions and outlook

Adiabatic dynamics of entanglement in large nmulti-partite systems.We decomposed adiabatic evolutions
into a sequence of projector activations, and for each of these activations, we traced the changes of
entanglement to eigenstate swaps that occur at avoided level crossings. We found that the speed and
efficiency of the underlying swaps of eigenstates depend on how narrowly the level crossings are avoided, and
this can be traced back to how closely the projector |v⟩⟨v| that is currently being activated is aligned to any
prior eigenvector, |dk⟩.

It is worth noting that all of our main theorems and results are independent of the specific choice of
adiabatic schedule and remain valid for general adiabatic computation or its discretized digital versions; i.e.
gate-based quantum circuits. The sequential introduction of rank-one projectors serves not as a
computational method but as an analytically tractable tool that isolates the fundamental mechanisms
between entanglement behavior and the spectral structure of a Hamiltonian.

While we showed this here explicitly for bi-partite and tri-partite systems, it is straightforward to extend
this analysis to the dynamics of the more complex entanglement that can arise in n-partite systems for n> 3,
for example, in n-qubit AQC.

Entanglement dynamics, gaps, and quantum advantage.
An interesting direction for future investigation concerns the relationship between the energy landscape
structure—specifically the presence of Hamming-distant local minima—and the entanglement properties of
the instantaneous ground state during adiabatic evolution. As we discussed above, the existence of such
distant minima implies that, at some intermediate stage, after the high cost computational basis states have
been eliminated from the ground state, the ground state |0(t)⟩must be a coherent superposition of regions of
low-cost configurations that differ on a large number of qubits. Such a cat-like state is fragile, see [20] and,
crucially, it cannot be factorized across any bipartition that splits the differing bits, implying the presence of
large amounts of genuine multipartite entanglement.

It will be very interesting to explore this connection further, particularly in relation to the nature of a
potential quantum phase transition [4, 5, 21–23] that the system may undergo during the adiabatic
evolution, in the thermodynamic limit, as the regions of energy below a threshold that exist around local
minima may link up or separate, analogously to Anderson localization. On Anderson localization, see, e.g.
[24]. In particular, the entanglement structure necessitated by the cost landscape might serve as a diagnostic
for distinguishing first-order transitions that would come with exponentially small gaps and abrupt changes
in ground state structure from second-order transitions, where the gap could close polynomially, potentially
making the AQC more efficient. A more detailed understanding of how the cost function landscape and
corresponding entanglement build-up correlates with gap behavior and transition order could offer valuable
insights into the design of more efficient adiabatic algorithms.

New tools. In the context of this set of questions, the tools and insights that we developed in this paper can
be useful since they describe the elementary mechanism behind the adiabatic dynamics of entanglement: the
effectively successive activation of the projectors that make up the problem Hamiltonian, Hp, leading to the
swaps of eigenvectors at the avoided level crossings that change the entanglement structure.

In particular, we found in section 6, that the efficiency of these entanglement-changing processes is
intrinsically linked to the size of their corresponding energy gaps. Specifically, edge cases, where the activated
projector |vk⟩ is nearly aligned with a prior eigenstate, lead to the most efficient entanglement changes. But
edge cases imply narrowly avoided crossings (theorem 8) and narrow gaps gmin necessitate a longer evolution
time T∝ 1/g2min (or potentially 1/g

3
min, see [3, 5]) to maintain adiabaticity. Conversely, less narrow gaps can

be traversed faster, but they generate less entanglement dynamics.
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Therefore, at every avoided level crossing of the ground state, the link between the efficiency of
entanglement redistribution and the size of the gap involves a nontrivial tradeoff: narrower gaps enable more
effective redistribution of entanglement but necessitate slower evolution to preserve adiabaticity.

This trade-off needs to be understood to establish criteria for a quantum advantage. To this end, it will be
useful to investigate further the non-edge cases. For this purpose, it will be very interesting to focus on the
Cauchy interlaced values and their states. This is because, as discussed above, we can already infer from [13]
that for all projector activations, edge case or not, the energy eigenvalues converge towards the interlaced
eigenvalues of the Cauchy interlacing theorem. This means that for all projector activations, the
instantaneous ground state |E1(µ)⟩ converges toward the state |E∗1 ⟩. The edge cases are the special cases
where |E2(0)⟩ ≈ |E∗1 ⟩.

Beyond the analysis of eigenvector swaps (section 5 and appendix A), and the relationship between
entanglement transfer and gaps (section 6), also the combinatorial observations and the quantitative
measures of coherent information (section 8) that we analyzed here, help provide a non-perturbative
framework to investigate this intricate relationship between classical problem structure, quantum resource
utilization (entanglement), and the potential for quantum advantage in AQC.

Further, also in quantum annealing, which has already found industrial applications [25–29], it should
be very interesting to use the present results to similarly explore the relationship between computational
complexity, in the sense of the maximum speed of the computation, and the usage of the resource of
entanglement.

Non-AQC and Landau–Zener.More generally, the role of entanglement in adiabatic and adiabatic-inspired
algorithms is an active area of research [7, 9, 30–35] for which our results provide new tools. For example,
the group theoretic approach in appendix A could enable qualitative tracking of entanglement, also possibly
using graphical strategies, [36, 37], without the need for full numerical simulations.

In particular, it will be interesting to explore how the relationship between computational speed and the
usage of the resource of entanglement that we found here generalizes to adiabatic-inspired and diabatic
quantum computing algorithms such as QAOA [7] and adiabatic/diabatic quantum algorithms, see, e.g. [9,
38], as well as to counter-diabatic algorithms, see, e.g. [39, 40]. To this end, it will be straightforward, for
example, to generalize our present results by strategically permitting diabatic state transitions, namely by
using the Landau–Zener transition probabilities to allow controlled non-adiabaticity at chosen avoided level
crossings.

Quantitative tracking of entanglement with coherent information. Independently of AQC, in order to
quantitatively track the creation and transfer of entanglement during any adiabatic interactions, we
calculated coherent informations based on the 2-Renyi entropy. This allowed us to use our nonpertubative
approach to track the dynamics of entanglement during the full duration of even strong interactions. For
prior results on the perturbative tracking of the dynamics of entropies and entanglement during interactions,
see [20, 41, 42]. It will be interesting to apply our nonperturbative methods to the 1-Renyi entropy-based
coherent information since this will provide lower bounds for the quantum channel capacities of the direct
and complementary channels.

Quantum error correction. In quantum processors, an important source of quantum errors is the
inadvertent creation or transfer of entanglement due to unintended interactions among qubits or among
qubits and their environment. Quantum error correction aims to protect quantum information through
encoding and decoding techniques. Numerous studies, including those in AQC, have focused on this goal
[43–47].

In this context, the theory presented in this work demonstrates, for example, that if a qubit A is entangled
with an ancilla Ã, it is possible to surgically disentangle A from Ã by having a qubit B interact with A using
for example a tailored edge-case-like Hamiltonian. Equally, it is possible to choose the interaction between A
and B such that the entanglement with Ã becomes distributed between A and B, see e.g. the tri-partite
entangled state (5). This ability to surgically entangle, disentangle and transfer entanglement, Hilbert space
dimension by Hilbert space dimension, i.e. on the most elementary level, will be useful for quantum error
prevention and correction in adiabatic, adiabatic-inspired and algorithmic quantum computation, see, e.g.
[43–47]. To this end, it should be very interesting to explore training machine learning models to use these
surgical tools for quantum error prevention and correction adapted to the hardware at hand. For examples of
machine learning applied to quantum computation (including adiabatic computation) and error correction,
see e.g. [48–56].
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New entanglement measures. Based on our finding that the dynamics of entanglement can be traced to
eigenstate swaps at avoided level crossings, the development of new measures of multi-partite entanglement
may be possible. For example, it will be interesting to explore measures based on the minimum number of
projector activations, avoided level crossings and associated state swaps that are needed to create a given
entangled state from an unentangled state. Such measures are nontrivial since, for example, for a projector
activation to arrive at a desired critical µ value, it may first have to pass through other critical µ values that
could impart collateral damage to the effort of generating the entangled target state. Similar to Rubik’s cube,
a group theoretic analysis could be developed here, along with mnemonic devices. Inspired by the categorical
approach to knot invariants [57–59], it may also be possible to use category-theoretic methods to develop
entanglement measures or entanglement invariants (i.e. functors) based on our findings. To this end, the
over and under crossings in knots would be replaced by the different but reminiscent structure of eigenvector
swaps at avoided level crossings. While the Reidemeister moves of knots lead to the quantum Yang Baxter
equation whose solutions can be used to generate knot invariant polynomials, as is well known, see, e.g. [59],
here it will be very interesting to pursue an analog approach by exploring possible analogs of Reidemeister
moves for avoided level crossings.
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Appendix A. Group theoretic view of the special construction of |v⟩

In the previous section, we showed that the evolution with the edge case |v⟩ constructed as in theorem 7
results in two eigenvalues swapping their eigenvectors. It is possible to represent this swapping as a
transposition of two elements in a set comprised of eigenvectors of H(t). A transposition in a set of elements
is a permutation that exchanges two elements and keeps all the rest unchanged.

It is well known that the permutation group SN on N elements can be generated by composing
transpositions. This means that using multiple interaction terms, which are constructed according to
theorem 7, we can obtain any permutation of eigenvectors of the Hamiltonian H(t). By this, we mean that
upon addition of the specially constructed interaction terms µ( j)(t)|v( j)⟩⟨v( j)| to the initial Hamiltonian D,
the eigenvalues of H(t) = D+

∑
jµ

( j)(t)|v( j)⟩⟨v( j)| will have the eigenvectors of the initial Hamiltonian D
but permuted. To see this remarkable relation, consider the Hamiltonian

H(t) = D+µ(t) |v⟩⟨v| , (A1)

where µ(0) = 0. Let

M0 := {|d0⟩ , |d1⟩ , . . . , |dk⟩ , . . . , |dN−1⟩} (A2)

denote an ordered set of eigenvectors of H(0) = D with the corresponding eigenvalues ordered as

d0 < d1 < · · ·< dk < · · ·< dN−1. (A3)

We now construct |v⟩ in accordance with theorem 7. Specifically, we set the kth component of |v⟩ to be
dominant, vk = 1− (N− 1)ϵ2 where ϵ≪ 1. The rest of the components are set to ϵ. Let tf denote the final
time. Set µ(tf) = µk+1 +∆µ where µk+1 is the critical µ-value defined as

µk+1 =
dk+1 − dk

|vk|2
, (A4)

and 0<∆µ < µk+2.

27



Quantum Sci. Technol. 10 (2025) 045054 E Gabbassov and A Kempf

By theorem 7, in the limit ϵ→ 0, the final Hamiltonian H(tf) will have the following ordered set of
eigenvectors

Mtf = {|d0⟩ , |d1⟩ , . . . , |dk+1⟩ , |dk⟩ , . . . , |dN−1⟩} , (A5)

with the corresponding eigenvalues

s0 < s1 < · · ·< sk < sk+1 < · · ·< sN−1. (A6)

We note that the final Hamiltonian H(tf) has the same eigenvectors as the initial Hamiltonian H(0) = D, but
the kth and k+ 1 eigenvalues have traded eigenvectors, i.e. the eigenvalues sk < sk+1 have the associated
eigenvectors |dk+1⟩ and |dk⟩, respectively. We have illustrated this behavior in figure 5.

In the construction above, we have shown that choosing the kth component of |v⟩ to be dominant and
choosing the critical point µk+1 accomplishes the transposition of eigenvectors |dk⟩ and |dk+1⟩. Using the
group theoretic cycle notation, we let (k,k+ 1) denote a transposition of elements k and k+ 1, and ∗ denote
the action of transposition on a set of elements. For example, (3,4) ∗ {1,2,3,4}= {1,2,4,3} signifies that 3
is mapped to 4, and 4 is mapped to 3. Therefore, the choice of the dominant component vk and the critical
point µk+1 can be succinctly represented as a transposition (k,k+ 1) which acts on a set of eigenvectorsM0.
Hence, we can write

(k,k+ 1) ∗M0 =Mtf . (A7)

It is now trivial to see how adding multiple rank-one projectors affects the eigenstates of H(t). Let
D(1) :=H(tf) and add another interaction term µ(2)(t)|v(2)⟩⟨v(2)| such that µ(2)(t) = 0 for t⩽ tf. Then, the
updated Hamiltonian is

H(t) = D(1) +µ(2) (t) |v(2)⟩⟨v(2)|, (A8)

such that

H(t) = D(1), for t= tf, (A9)

H(t) = D(1) +µ(2) (t) |v(2)⟩⟨v(2)|, for tf < t⩽ t(2)f . (A10)

We, construct |v(2)⟩ with a dominant component v(2)j , choose the critical point µ(2)
j+1 and let µ(t(2)f ) = µ

(2)
j+1+

∆µ(2). Using the cyclic notation for transposition, we can easily obtain the setM
t(2)f

of eigenvectors of

H(t(2)f ). To this end, perform the following computation:

( j, j+ 1)(k,k+ 1) ∗M0 = ( j, j+ 1) ∗Mtf =M
t(2)f

(A11)

That is, we first swap elements k and k+ 1, and then we swap elements j, j+ 1.
This abstraction allows us to deduce several interesting properties about the addition of specially

constructed rank-one projectors. For example, if µ(2)(t)|v(2)⟩⟨v(2)| is introduced before µ(t) |v⟩⟨v|, how does
the ordering of eigenstates change? We can easily answer this question by recalling that the transpositions
( j, j+ 1) and (k,k+ 1) commute if j ̸= k. Therefore, the ordering of eigenvectors of the final Hamiltonian

H(t(2)f ) is the same regardless of which interaction term is introduced first as long as j ̸= k.
Recalling that transpositions generate the permutation group SN, we can deduce that adding multiple

specially constructed rank-one projectors is equivalent to composing transpositions, and by composing
transpositions, we can achieve any permutation. Therefore, it is possible to induce any ordering of eigenstates
of the final Hamiltonian.

We would like to point out that transpositions are not the only types of permutation that can be
achieved. It is also possible to choose the critical point µk such that the associated permutation is a shift. To
see this, choose the dominant component to be vk for k< N− 1. Then choose the critical point µN−1 and set
µ(tf) = µN−1 +∆µ. Then, the associated permutation is a shift to the right of all elements that are greater or
equal to k. This shift in cycle notation is (k,k+ 1,k+ 2, . . . ,N− 1). The rest of the elements remain
unchanged.

Since the set of permutations SN forms a group, it contains a neutral element, and each element in SN has
an inverse. We can identify the neutral element of SN with the interaction term µ(t) |v⟩⟨v| where |v⟩ is simply
an eigenvector of D. Adding such an interaction term will keep the order of eigenvectors unchanged. To find
the inverse of a permutation, it is sufficient to identify inverses of transpositions (k,k+ 1). In other words, we
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want to find µ(2)(t)|v(2)⟩⟨v(2)|, which reverses the action of µ(t) |v⟩⟨v| associated with the transposition
(k,k+ 1). To achieve this, we work in the eigenbasis of D(1) = D+µ(tf) |v⟩⟨v|. Next, we choose a critical
point µ(2)

k+1, set µ(t
(2)
f ) = µ

(2)
k+1 +∆µ(2), and choose the dominant component |v⟩ to be vk. This can be again

written as (k,k+ 1)(2), where the superscript indicates that transposition acts on eigenvectors of
D(1) = D+µ(tf) |v⟩⟨v|.

Having generalized the behavior of eigenstates of the Hamiltonian under the addition of specially
constructed rank-one projects, we can revisit theorem 4 and view it from the perspective of permutations.
We again consider the tripartite system ÃAB, where ÃA are entangled, and B is in a pure, unentangled state.
For some fixed indices i< j, suppose eigenvalues of D are ordered as

di0 < di1 < · · ·< diℓ < · · ·< dj0 < dj1, (A12)

and suppose that the combined system is initialized in the following state:

|ψÃAB⟩= αii |ãi⟩ |ai⟩ |b0⟩+αjj

∣∣ãj〉∣∣aj〉 |b0⟩ (A13)

We construct |v⟩ according to theorem 4, namely, we let viℓ to be the dominant component, and we choose
the critical point µj0 = (dj0 − diℓ)/|viℓ|2 and set µ(tf) = µj0 +∆µ. Then the initial state in (A13) will
adiabatically evolve into

|ψÃ ′A ′B ′⟩= ηiiαii |ãi⟩ |ai⟩ |b0⟩+ ηjjαjj

∣∣ãj〉 |ai⟩ |bℓ⟩
= |ai⟩⊗

(
ηiiαii |ãi⟩ |b0⟩+ ηjjαjj

∣∣ãj〉 |bℓ⟩) . (A14)

In the above ηii,ηjj are dynamical phases. Importantly, |ai⟩ can be factored out. Therefore, A is now
unentangled and pure, whereas Ã and B are entangled. Essentially, we performed a shift and a swap in the
eigenvectors of H(tf). Specifically, the eigenvalue sj0 of H(tf) now has eigenvector |ai⟩ |bℓ⟩, whereas the
eigenvalue siℓ has a acquired the eigenvector of the neighboring larger eigenvalue di,ℓ+1. Having assigned
(permuted) the eigenvectors of H(tf) to different eigenvalues, we made sure that the initial state in (A13)
adiabatically evolves into (A14).

Appendix B. Proof of lemma 1

Each activation of a projector is described by a time-dependent Hamiltonian of the form:

H(t) := D+µ(t) |v⟩⟨v| (B1)

Lemma 1. Let H(t) in (B1) be the Hamiltonian of a quantum system with a non-degenerate spectrum. Let |v⟩ be
an arbitrary generic vector and dk be the eigenvalues of D. For any eigenvalue s := s(µ(t)) ̸= dk of H(t), the
corresponding eigenstate |s⟩ is given by

|s⟩= γ (sI−D)−1 |v⟩ , (B2)

where γ is a normalization constant defined as

γ =
1

∥(sI−D)−1 |v⟩∥
. (B3)

Our goal is to derive an explicit expression for the eigenstate |s⟩ of H(t). Let s := s(µ(t)) and µ := µ(t).
We want to consider the following eigenvector equation:

H(t) |s⟩= s |s⟩ (B4)

(D+µ |v⟩⟨v|) |s⟩= s |s⟩ (B5)

Rearranging terms, we get:

(sI−D) |s⟩= µ |v⟩⟨v|s⟩ (B6)

|s⟩= µ⟨v|s⟩(sI−D)−1 |v⟩ (B7)

Finally, we set γ = 1/∥(sI−D)−1 |v⟩∥ and redefine |s⟩ as

|s⟩ := γ (sI−D)−1 |v⟩ . (B8)
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Appendix C. Proof of lemma 3

Explicit expression for µ as a function of the eigenvalue s of H(t) for all real s. Concretely, working in the
eigenbasis {|dk⟩}N−1

k=0 of the initial Hamiltonian D, we have:

µ(s) =

(
N−1∑
k=0

|vk|2

s− dk

)−1

(C1)

Lemma 3. Let s be an arbitrary real number. Consider the Hamiltonian defined by H(s) = D+µ(s) |v⟩⟨v|,
where µ(s) is as in (C1) and |v⟩ is arbitrary. Then, s is an eigenvalue of H(s).

Consider an N ×N Hermitian matrix H(s) = D+µ(s) |v⟩⟨v|, where µ(s) is a scalar function to be
determined. Let {dk} and {|dk⟩} be the eigenvalues and eigenvectors of D. Define vk = ⟨dk|v⟩. For a real
number s, the characteristic polynomial p(s) of H(s) can be expressed as:

p(s) = det(H(s)− sI)

= det(D+µ(s) |v⟩⟨v| − sI) (C2)

Using Cauchy’s formula for the determinant of a rank-one perturbation [60, section 0.8], we have:

p(s) = det(D− sI)

(
1−µ(s)

N−1∑
k=0

|vk|2

s− dk

)
(C3)

Define µ(s) as:

µ(s) =

(
N−1∑
k=0

|vk|2

s− dk

)−1

(C4)

This choice of µ(s) ensures that the factor within the parentheses in the determinant expression (C3)
becomes zero, leading to p(s) = 0. Therefore, s is an eigenvalue of H(s).

Appendix D. Proof of theorem 4

Theorem 4. Let n= dimA and m= dimB. For some fixed indices i< j, suppose the eigenvalues of D are
ordered as

di0 < di1 < · · ·< dj0 < dj1. (D1)

Let system ÃA be entangled and B be in a pure, unentangled state:

|ψÃAB⟩= αii |ãi⟩ |ai⟩ |b0⟩+αjj

∣∣ãj〉∣∣aj〉 |b0⟩ (D2)

Fix an index ℓ⩾ 0 such that di0 ⩽ diℓ < dj0. For ϵ> 0, if |v⟩ is such that

vkp =

{
1− (nm− 1)ϵ2 for k= i,p= ℓ,

ϵ otherwise,
(D3)

and

µtf ∈
(
dj0 − diℓ
|viℓ|2

,
dj1 − diℓ
|viℓ|2

)
. (D4)

Then, as ϵ→ 0, the entanglement of the evolved system is such that Ã becomes entangled with B, and A becomes
pure and unentangled. Furthermore, if

µtf >
dj1 − diℓ
|viℓ|2

, (D5)

then as ϵ→ 0, the entanglement of the evolved system is such that Ã becomes again entangled with A, and B
becomes again pure and unentangled.
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The proof is the direct application of theorem 5 or 6. Let the system ÃA be entangled and B be in a pure
and unentangled state:

|ψÃAB⟩= αii |ãi⟩ |ai⟩ |b0⟩+αjj

∣∣ãj〉∣∣aj〉 |b0⟩ . (D6)

For ϵ> 0 and fixed index i, define |v⟩ in the eigenbasis {|ak⟩
∣∣bp〉}kp of HA and HB such that

vkp =

{
1− (nm− 1)ϵ2 for k= i,p= 0,

ϵ otherwise.
(D7)

Suppose that µtf is in the interval
(

dj0−di0
|vi0|2 ,

dj1−di0
|vi0|2

)
. Then, by theorem 5, at the limit ϵ→ 0, the state

|ai⟩ |b0⟩ evolves into the next higher-energy state |ai⟩ |b1⟩, while the state
∣∣aj〉 |b0⟩ evolves into |ai⟩ |b0⟩. Hence,

the final state is:

|ψÃ ′A ′B ′⟩= ηiiαii |ãi⟩ |ai⟩ |b1⟩+ ηjjαjj

∣∣ãj〉 |ai⟩ |b0⟩
= |ai⟩⊗

(
ηiiαii |ãi⟩ |b1⟩+ ηjjαjj

∣∣ãj〉 |b0⟩) (D8)

In the above, ηii and ηjj are dynamical phases that were acquired during the evolution. Importantly, we
immediately see that |ai⟩ can be factored out, which implies that system A is now untangled and pure,
whereas Ã and B are entangled.

Suppose that µtf >
dj1−di0
|vi0|2 . Then, by theorem 5, at ϵ→ 0, the states |ai⟩ |b0⟩ and

∣∣aj〉 |b0⟩ evolve to their
next respective higher-energy states: |ai⟩ |b1⟩ and

∣∣aj〉 |b1⟩. Hence, the final state of the total system is:

|ψÃAB⟩= η ′
iiαii |ãi⟩ |ai⟩ |b1⟩+ η ′

jjαjj

∣∣ãj〉∣∣aj〉 |b1⟩ (D9)

In the above, η ′
ii,η

′
jj are dynamical phases acquired during the evolution. Furthermore, the state |b1⟩ can be

factored out. We deduce that the system B is now pure and unentangled, whereas Ã and A are entangled as in
the initial state. As such, the entanglement structure is preserved.

Appendix E. Proof of lemma 9

Lemma 9. Let |v⟩ be constructed as in (D3) and suppose that for k⩾ i, we have

µ(t)>
dk+1 − di

|vi|2
. (E1)

Then, there exists C1 > 0 such that

dk+1 − sk (µ(t))< C1ϵ
2. (E2)

Consequently,

ϵ

dk+1 − sk (µ(t))
>

1

C1ϵ
. (E3)

Furthermore, if

0⩽ µ(t)<
dk − di
|vi|2

, (E4)

then there exists C2 ⩾ 0 such that

sk − dk ⩽ C2ϵ
2. (E5)

We first prove the lemma 9 and use it to prove theorem 5. Let N be the dimension of the Hilbert space
H(t) acts on. Let {

∣∣dj〉}N−1
j=0 be the eigenbasis of D with eigenvalues d0 < · · ·< dN−1. Consider the

characteristic polynomial of H(t) in the eigenbasis D and µ⩾ 0:

p(s) = det(D+µ |v⟩⟨v| − sI) (E6)

= det(D− sI)

1+µ
N−1∑
j=0

|vj|2

dj − s

 (E7)
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=
N−1∏
j=0

(
dj − s

)1+µ
N−1∑
j=0

|vj|2

dj − s

 . (E8)

Fix index i and construct |v⟩ according to (F1) in theorem 5. Then,

vj =

{
1− (N− 1)ϵ2 for j = i,

ϵ otherwise.
(E9)

Without loss of generality, assume that i= 0, then v0 = 1− (N− 1)ϵ2 and vj = ϵ for j> 0. The characteristic
polynomial becomes:

p(s) =
N−1∏
j=0

(
dj − s

)1+µ
|v0|2

d0 − s
+µϵ2

N−1∑
j=1

1

dj − s

 (E10)

For any index p, due to the interlacing inequality, there exists eigenvalue s of H(t) such that dp ⩽ s< dp+1.
Without loss of generality and for simplicity, we consider p= 0. Then, d0 ⩽ s< d1 for µ⩾ 0. Hence, we have:

p(s) =
N−1∏
j=0

(
dj − s

)1+µ
|v0|2

d0 − s
+µϵ2

N−1∑
j=1

1

dj − s

= 0 (E11)

Assuming µ> 0, we get d0 < s< d1. Therefore, we must have

1+µ
|v0|2

d0 − s
+µϵ2

N−1∑
j=1

1

dj − s
= 0. (E12)

Rewrite the above as

1+µ
|v0|2

d0 − s
+µϵ2

1

d1 − s
+µϵ2

N−1∑
j=2

1

dj − s
= 0. (E13)

Since d0 < s< d1 < · · ·< dN−1, we have dj − s> dj − d1 for j ⩾ 2. It follows that

N−1∑
j=2

1

dj − s
<

N−1∑
j=2

1

dj − d1
. (E14)

Define Z :=
∑N−1

j=2
1

dj−d1
and note that it is independent of s and hence independent of µ. Thus,

1+µ
|v0|2

d0 − s
+µϵ2

1

d1 − s
+µϵ2Z> 0. (E15)

Rearranging yields:

ϵ2
1

d1 − s
>− 1

µ
+

|v0|2

s− d0
− ϵ2Z (E16)

Since d0 < s< d1, we have s− d0 < d1 − d0. Therefore, |v0|2/(s− d0)> |v0|2/(d1 − d0). Using this, we get

ϵ2
1

d1 − s
>− 1

µ
+

|v0|2

d1 − d0
− ϵ2Z. (E17)

Rearranging terms yields:

ϵ2 + ϵ2 (d1 − s)Z> (d1 − s)

(
− 1

µ
+

|v0|2

d1 − d0

)
(E18)

Since d1 − s< d1 − d0, we can write:

ϵ2 + ϵ2 (d1 − d0)Z> (d1 − s)

(
− 1

µ
+

|v0|2

d1 − d0

)
(E19)
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The above can be rewritten as:

ϵ2 (1+(d1 − d0)Z)

− 1
µ + |v0|2

d1−d0

> d1 − s (E20)

Note that the denominator can be re-expressed as:

− 1

µ
+

|v0|2

d1 − d0
=

|v0|2µ+ d0 − d1
(d1 − d0)µ

(E21)

Hence, (E20) can be written as:

ϵ2 (1+(d1 − d0)Z)(d1 − d0)µ

|v0|2µ+ d0 − d1
> d1 − s (E22)

Since µ > (d1 − d0)/|v0|2, we have |v0|2µ+ d0 − d1 > 0. Finally, we note that |v0|2 < 1, therefore
|v0|2µ < µ < 2µ. Thus, we have:

ϵ2 (1+(d1 − d0)Z)(d1 − d0)2µ

µ+ d0 − d1
> d1 − s (E23)

We can eliminate the dependence on µ by letting µ→+∞. In the limit µ→+∞, we get a tighter bound:

ϵ2 (1+(d1 − d0)Z)(d1 − d0)2> d1 − s (E24)

Using similar arguments as above, it is straightforward to show that for 0< µ < d1 − d0 < (d1 − d0)/|v0|2
and d1 < s< d2, we have

ϵ2µ(d1 − d0)

d1 −µ− d0
⩾ s− d1. (E25)

We note that the bound can be saturated for µ= 0. In this case, we haveH(t) = D, which means s = d1. This
proves lemma 9.

Appendix F. Proof of theorem 5

Theorem 5. Let N be the dimension of the Hilbert space that H(t) acts on and {dj}N−1
j=0 be the increasing

sequence of the eigenvalues of D.
Fix index i and let ϵ> 0. Suppose |v⟩ is a vector characterized by its components vj =

〈
v
∣∣dj〉 as follows:

vj =

{
1− (N− 1)ϵ2 if j = i

ϵ otherwise
(F1)

For k> i, if µtf lies within the interval (
−∞,

dk − di
|vi|2

)
, (F2)

then the eigenstate |dk⟩ of D adiabatically evolves as

Utf |dk⟩ → |dk⟩ as ϵ→ 0. (F3)

If µtf lies within the interval (
dk − di
|vi|2

,
dk+1 − di

|vi|2

)
, (F4)

then

Utf |dk⟩ → |di⟩ as ϵ→ 0. (F5)

If µtf lies within the interval (
dk+1 − di

|vi|2
,+∞

)
, (F6)
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then

Utf |dk⟩ → |dk+1⟩ as ϵ→ 0. (F7)

We now prove theorem 5. By lemmas 1 and 2, we have

U
(
tf
)
|dk⟩= γ (sI−D)−1 |v⟩ , (F8)

where eigenvalue dk < s< dk+1. For 0< µ < (dk − di)/|vi|2, by lemma 9, we get that there exists C2 ⩾ 0 such
that

s− dk ⩽ C2ϵ
2. (F9)

Furthermore, we have:

ϵ

s− dk
⩾ ϵ

C2ϵ2
=

1

C2ϵ
(F10)

It follows that the component ⟨s|dk⟩ of |s⟩ tends to dominate all other components:

⟨s|dk⟩= γ
vk

s− dk
= γ

ϵ

s− dk
→ 1 as ϵ→ 0 (F11)

We remark that the normalization constant γ prevents the equation above blow up by trending toward zero
together with ϵ. Therefore, |s⟩ → |dk⟩ as ϵ→ 0. This proves (F3).

Now, suppose that (dk+1 − di)/|vi|2 < µ and as before dk < s< dk+1. Then by lemma 9, there exists C1

such that:

dk+1 − s< C1ϵ
2 (F12)

It follows that

⟨s|dk+1⟩= γ
vk+1

s− dk+1
= γ

ϵ

s− dk+1
<−γ 1

C1ϵ
. (F13)

Hence, the component ⟨s|dk+1⟩ of |s⟩ approaches−1 as ϵ tends to zero. Also, as ϵ tends to zero, so does γ.
This proves (F7).

For a fixed µ ∈
(

dk−di
|vi|2 ,

dk+1−di
|vi|2

)
, we have dk < s< dk+1. Therefore, the component

⟨s|di⟩= γ
vi

s− di
= γ

1− (N− 1)ϵ2

s− di
(F14)

must converge to 1 as ϵ tends to zero and γ tends to s− di. This proves (F5).

Appendix G. Proof of theorem 6

Theorem 6 (alternative). Let {dj}N−1
j=0 be an increasing sequence of eigenvalues of D.

Fix index i and let ϵ ∈ (0,1). Suppose |v⟩ is a vector characterized by its components vj =
〈
v
∣∣dj〉 as follows:

vj =

{
1− (N− 1)ϵ2 if j = i

ϵ otherwise
(G1)

For each k⩾ i, define µk+1 as:

µk+1 :=
dk+1 − di

|vi|2
(G2)

Let U(t) be the adiabatic evolution operator of H(t). Then, in the limit as ϵ→ 0, the following transitions occur:

U(t(µk+1 −∆µ)) |dk⟩ → |di⟩ (G3)

U(t(µk+1 +∆µ)) |1⟩dk → |dk+1⟩ (G4)

U(t(µk+1 −∆µ)) |dk+1⟩ → |dk+1⟩ (G5)

U(t(µk+1 +∆µ)) |dk+1⟩ → |di⟩ . (G6)
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In the above,∆µ is chosen such that

0<∆µ <min{µk+2 −µk+1,µk+1 −µk} , (G7)

where µk < µk+1 < µk+2.

Theorem 6 is a restatement of theorem 5 with a focus on the critical points µk+1 := (dk+1 − dk)/|vi|2
instead of the intervals given in theorem 5. We only note that µ(t) is a monotonous function of time and
hence is invertible. Therefore, for µ(t) = µk+1 ±∆µ, we can solve for t to get the critical time point
t(µk+1 ±∆µ) around which the eigenstate transitions are happening.

Appendix H. Proof of theorem 7

Theorem 7 (Eigenstates Swap). Let dk+1 be an eigenvalue of D. Suppose that |v⟩ is constructed as in (G1). Let
µk+1 and∆µ > 0 be the critical point and increment of µk+1 as described in (G2) and (G7), respectively. Then,
in the limit ϵ→ 0, we have the following relation:

|sk (µk+1 −∆µ)⟩= |v⟩ and |sk+1 (µk+1 −∆µ)⟩= |dk+1⟩
|sk (µk+1 +∆µ)⟩= |dk+1⟩ and |sk+1 (µk+1 +∆µ)⟩= |v⟩

Here, for the adiabatic evolution operator U(t(µ)) of H(t), we have:

|sk (µ)⟩ := U(t(µ)) |dk⟩ (H1)

This theorem is a succinct restatement of theorems 5 and 6.

Appendix I. Proof of theorem 8

Theorem 8. Let |v⟩ be constructed as in (D3). For index k, let sk(µ(t))< sk+1(µ(t)) be any two consecutive
eigenvalues of H(t). Then, there exists C0 > 0 such that to second order in ϵ, we have:

sk+1 (µ(t))− sk (µ(t))⩾ C0ϵ
2 for all t> 0 (I1)

For an index k, define sk := sk(µ). Recall that for µ⩾ 0, sk ⩽ dk+1 ⩽ sk+1. We will show that for the
construction of |v⟩ as in theorem 5 there exists C0 > 0 such that

dk+1 − sk > C0ϵ
2, (I2)

sk+1 − dk+1 ⩾ 0. (I3)

Therefore, dk+1 − sk + sk+1 − dk+1 = sk+1 − sk > C0ϵ
2.

For the case µ< 0, we will simply have a vertically mirrored behaviour. That is

sk−1 ⩽ dk−1 ⩽ sk ⩽ dk, (I4)

and it will follow that

sk − dk−1 > C0ϵ
2, (I5)

dk−1 − sk−1 > 0. (I6)

Hence, sk − sk−1 > C0ϵ
2.

Since the case µ< 0 is the mirrored version of the case µ⩾ 0, we prove the case for the positive µ for
which sk ⩽ dk+1 ⩽ sk+1.

Without loss of generality, fix i= 0, then v0 = 1− (N− 1)ϵ2 and vj = ϵ for j> 0. Also, for notation
clarity, fix k = 0. Then we show s1 − s0 > C0ϵ

2.
Consider a characteristic polynomial H(t) = D+µ |v⟩⟨v| given by:

p(s) =
N−1∏
j=0

(
dj − s

)1+µ
|v0|2

d0 − s
+µϵ2

N−1∑
j=1

1

dj − s

 (I7)
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Due to the construction of |v⟩ and µ⩾ 0, the eigenvalue s0 of H(t) is such that d0 ⩽ s0 < d1. Hence,
p(s0) = 0. Since, the case µ = 0 is trivial, we consider µ> 0. Then it follows that:

1+µ
|v0|2

d0 − s0
+µϵ2

1

d1 − s0
+µϵ2

N−1∑
j=2

1

dj − s0
= 0 (I8)

We want to show that there exists C0 > 0, such that d1 − s0 > C0ϵ
2. To this end, rearrange (I8) as follows:

ϵ2

d1 − s0
=− 1

µ
− |v0|2

d0 − s0
− ϵ2

N−1∑
j=2

1

dj − s0
(I9)

Then,

ϵ2

d1 − s0
<− 1

µ
− |v0|2

d0 − s0
=− 1

µ
+

|v0|2

s0 − d0
.

Suppose s0 is closer to d1, i.e. s0 >
d1+d0

2 , then

|v0|2

s0 − d0
<

|v0|2

(d1 + d0)/2− d0
=

2|v0|2

d1 − d0
. (I10)

It follows that

ϵ2

d1 − s0
<− 1

µ
+

2|v0|2

d1 − d0
=

2|v0|2µ− d1 + d0
µ(d1 − d0)

. (I11)

Rearranging yields:

ϵ2µ(d1 − d0)

2|v0|2µ+ d0 − d1
< d1 − s0 (I12)

Note that for µ > (d1 − d0)/2|v0|2, the denominator is finite and positive. Also, since |v0|2µ < µ, we can
write:

ϵ2µ(d1 − d0)

2µ+ d0 − d1
< d1 − s0 (I13)

This shows that we can choose C0 to be a function of µ > (d1 − d0)/2|v0|2. However, we can also find a
simpler but less tight bound which is independent of µ. Note that s0 is at its closest to d1 for µ→+∞.
Therefore, we have

lim
µ→+∞

ϵ2µ(d1 − d0)

2µ+ d0 − d1
=
ϵ2 (d1 − d0)

2
, (I14)

and it follows that for µ> 0,

ϵ2 (d1 − d0)

2
< d1 − s0 (µ) . (I15)

Therefore, we can choose C0 = (d1 − d0)/2.
We now show s1 − d1 ⩾ 0. Note that for µ = 0, we get s1 = d1, and for µ> 0, s1 − d1 > 0 because vj > 0

for all j. Hence, we have

s1 − d1 ⩾ 0, (I16)

d1 − s0 > C0ϵ
2. (I17)

Adding two inequalities together gives

s1 − s0 > C0ϵ
2. (I18)
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Appendix J. Proof of theorem 10

We assume that the following Hamiltonian interaction governs the adiabatic evolution:

H(t) = I⊗HA ⊗ I+ I⊗ I⊗HB +µ(t) I⊗ |v⟩⟨v| (J1)

The joint initial state of ÃAB is:

|ψÃAB⟩= αii |ãi⟩ |ai⟩ |b0⟩+αjj

∣∣ãj〉∣∣aj〉 |b0⟩ (J2)

Theorem 10. Consider a tripartite quantum system ÃAB initially prepared in a state described by (J2). Assume
that the system undergoes adiabatic evolution according to the Hamiltonian H(t), as defined by (J1) with |v⟩⟨v|
being arbitrary. Then the purity-based coherent information for the direct channel A→ A ′ is given by

PId = νTr
[
TrB
[∣∣si0〉〈sj0∣∣]TrB [∣∣sj0〉〈si0∣∣]]

− νTr
[
TrB [|si0⟩⟨si0|]TrB

[∣∣sj0〉〈sj0∣∣]] , (J3)

where ν = 2|αii|2|αjj|2.

We commence with an initial state |ψÃAB⟩ ∈ HÃ ⊗HA ⊗HB. Let {ãk} be an arbitrary basis ofHÃ. Let
{|am⟩ |bn⟩} be an eigenbasis given by Hamiltonians HA and HB, which act on the Hilbert spacesHA andHB,
respectively. Then, for some fixed indices i and j, the initial state is defined as

|ψÃAB⟩=
(
αii |ãi⟩ |ai⟩+αjj

∣∣ãj〉∣∣aj〉) |b0⟩ . (J4)

Here αii and αjj are complex coefficients such that |αii|2 + |αjj|2 = 1. We express the initial state in matrix
density formalism, i.e. ρÃAB = |ψÃAB⟩⟨ψÃAB|. The goal is to compute the purity of the final state ρÃ ′A ′ of the
evolved subsystem Ã ′A ′. Recall that given an initial eigenstate |ak⟩ |b0⟩, the final eigenstate |sk0⟩ is given by
lemma 1. That is, we have:

|sk0⟩= γ (sk0I−D)−1 |v⟩ (J5)

Therefore, by lemma 1, the final state ρÃ ′A ′ is given by:

ρÃ ′A ′ = |αii|2 |ãi⟩⟨ãi| ⊗TrB [|si0⟩⟨si0|] (J6)

+αiiα
∗
jj

∣∣ãi〉〈ãj∣∣⊗TrB
[∣∣si0〉〈sj0∣∣]

+αjjα
∗
ii

∣∣ãj〉〈ãi∣∣⊗TrB
[∣∣sj0〉〈si0∣∣]

+ |αjj|2
∣∣ãj〉〈ãj∣∣⊗TrB

[∣∣sj0〉〈sj0∣∣]
In the above, we absorbed dynamical phases that arise during the adiabatic evolution into the definition of
eigenbasis vectors |ak⟩. Alternatively, we could carry the dynamical phases throughout the analysis to find
that they eventually simplify unity. Therefore, for ease of computation and clarity, we go with the former
approach. The square of the final state is:

ρ2
Ã ′A ′ = |αii|4 |ãi⟩⟨ãi| ⊗TrB [|si0⟩⟨si0|]2

+ |αii|2αiiα
∗
jj

∣∣ãi〉〈ãj∣∣⊗TrB [|si0⟩⟨si0|]TrB
[∣∣si0〉〈sj0∣∣]

+ |αii|2|αjj|2 |ãi⟩⟨ãi| ⊗TrB
[∣∣si0〉〈sj0∣∣]TrB [∣∣sj0〉〈si0∣∣]

+ |αjj|2αiiα
∗
jj

∣∣ãi〉〈ãj∣∣⊗TrB
[∣∣si0〉〈sj0∣∣]TrB [∣∣sj0〉〈sj0∣∣]

+ |αii|2αjjα
∗
ii

∣∣ãj〉〈ãi∣∣⊗TrB
[∣∣sj0〉〈si0∣∣]TrB [|si0⟩⟨si0|]

+ |αii|2|αjj|2
∣∣ãj〉〈ãj∣∣⊗TrB

[∣∣sj0〉〈si0∣∣]TrB [∣∣si0〉〈sj0∣∣]
+ |αjj|2αjjα

∗
ii

∣∣ãj〉〈ãi∣∣⊗TrB
[∣∣sj0〉〈sj0∣∣]TrB [∣∣sj0〉〈si0∣∣]

+ |αjj|4
∣∣ãj〉〈ãj∣∣⊗TrB

[∣∣sj0〉〈sj0∣∣]2 (J7)

Upon computing the trace of ρ2
Ã ′A ′ , and recognizing that Tr[|ãm⟩⟨ãn|] yields the Kronecker delta δmn, we can

derive the expression for P((ÃA) ′):
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P
((

ÃA
) ′)

= |αii|4Tr
[
(TrB [|si0⟩⟨si0|])2

]
+ |αjj|4Tr

[(
TrB
[∣∣sj0〉〈sj0∣∣])2]

+ 2|αii|2|αjj|2Tr
[
TrB
[∣∣si0〉〈sj0∣∣]TrB [∣∣sj0〉〈si0∣∣]] (J8)

Given (J6) it is straightforward to compute P(A ′). We first trace out Ã and obtain:

ρA′ = |αii|2TrB [|si0⟩⟨si0|] + |αjj|2TrB
[∣∣sj0〉〈sj0∣∣] (J9)

Squaring ρA′ and taking its trace yields:

P(A ′) = |αii|4Tr
[
(TrB [|si0⟩⟨si0|])2

]
+ |αjj|4Tr

[(
TrB
[∣∣sj0〉〈sj0∣∣])2]

+ 2|αii|2|αjj|2Tr
[
TrB [|si0⟩⟨si0|]TrB

[∣∣sj0〉〈sj0∣∣]] (J10)

Subtracting P(A ′) from P((ÃA) ′) yields the result.

Appendix K. Proof of theorem 11

Theorem 11. Under the assumptions stated in theorem 10, the purity-based coherent information for the
complementary channel A→ B ′ is given by

PIc = νTr
[
TrA
[∣∣si0〉〈sj0∣∣]TrA [∣∣sj0〉〈si0∣∣]]

− νTr
[
TrA [|si0⟩⟨si0|]TrA

[∣∣sj0〉〈sj0∣∣]] , (K1)

where ν = 2|αii|2|αjj|2.

The proof of theorem 11 follows the exact steps of the proof in appendix J except we trace over A instead
of B. Therefore, the purity of P((ÃB) ′) reads as:

P
((

ÃB
) ′)

= |αii|4Tr
[
(TrA [|si0⟩⟨si0|])2

]
+ |αjj|4Tr

[(
TrA
[∣∣sj0〉〈sj0∣∣])2]

+ 2|αii|2|αjj|2Tr
[
TrA
[∣∣si0〉〈sj0∣∣]TrA [∣∣sj0〉〈si0∣∣]] (K2)

Additionally, the marginal purity of B′ is given by:

P(B ′) = |αii|4Tr
[
(TrA [|si0⟩⟨si0|])2

]
+ |αjj|4Tr

[(
TrA
[∣∣sj0〉〈sj0∣∣])2]

+ 2|αii|2|αjj|2Tr
[
TrA [|si0⟩⟨si0|]TrA

[∣∣sj0〉〈sj0∣∣]] (K3)

Subtracting P(B ′) from P((ÃB) ′) yields the final result.

Appendix L. Proof of lemma 12

Lemma 12. Let ρAB := |s⟩⟨s| and ρA := TrB [ρAB], then the purity of ρA is given by

P(ρA) = γ4
∑
ijkp

vij(
s− dij

) v∗kj(
s− dkj

) vkp(
s− dkp

) v∗ip(
s− dip

) , (L1)

where vij =
〈
v
∣∣ai,bj〉 is a coefficient matrix of |v⟩ in the eigenbasis {|ai⟩

∣∣bj〉}ij of D and

γ =

∑
ij

∣∣∣∣ vij
s− dij

∣∣∣∣2
−1/2

. (L2)
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By lemma 1 we have

|s⟩= γ
∑
ij

vij
s− dij

|ai⟩
∣∣bj〉 , (L3)

where {|ai⟩
∣∣bj〉}ij is the eigenbasis of D=HA ⊗ I+ I⊗HB. It follows that:

ρAB = |s⟩⟨s|= γ2
∑
ijkp

vij
s− dij

v∗kp
s− dkp

|ai⟩
∣∣bj〉⟨ak|〈bp∣∣ (L4)

Tracing over B yields:

ρA := TrB (|s⟩⟨s|) = γ2
∑
j

∑
ik

vij
s− dij

v∗kj
s− dkj

|ai⟩⟨ak| (L5)

Squaring ρA and tracing yields the result.

AppendixM. Proof of lemma 13

The eigenvector of H(t) is given by:

|s⟩= γ (sI−D)−1 |v⟩ (M1)

Lemma 13. Let |s⟩, |s ′⟩, |s ′ ′⟩ and |s ′ ′ ′⟩ be eigenstates defined as in (M1). Then the following holds:

Tr [TrB [|s⟩⟨s ′|]TrB [|s ′ ′⟩⟨s ′ ′ ′|]] = γγ ′γ ′ ′γ ′ ′ ′
∑
ijkp

vij(
s− dij

) v∗kj(
s ′ − dkj

) vkp(
s ′ ′ − dkp

) v∗ip(
s ′ ′ ′ − dip

) (M2)

The proof follows the same steps as the proof in appendix L except we use lemma 1 to compute |s⟩⟨s ′| and
|s ′ ′⟩⟨s ′ ′ ′| where s, s ′, s ′ ′, s ′ ′ ′ are eigenvalues of final Hamiltonian:

|s⟩⟨s ′|= γγ ′
∑
ijkp

vij
s− dij

v∗kp
s ′ − dkp

|ai⟩
∣∣bj〉⟨ak|〈bp∣∣ ,

|s ′ ′⟩⟨s ′ ′ ′|= γ ′ ′γ ′ ′ ′
∑
ijkp

vij
s ′ ′ − dij

v∗kp
s ′ ′ ′ − dkp

|ai⟩
∣∣bj〉⟨ak|〈bp∣∣ .

Tracing over B yields:

TrB (|s⟩⟨s ′|) = γγ ′
∑
j

∑
ik

vij
s− dij

v∗kj
s ′ − dkj

|ai⟩⟨ak| ,

TrB (|s ′ ′⟩⟨s ′ ′ ′|) = γ ′ ′γ ′ ′ ′
∑
j

∑
ik

vij
s ′ ′ − dij

v∗kj
s ′ ′ ′ − dkj

|ai⟩⟨ak|

Computing the product TrB(|s⟩⟨s ′|)TrB(|s ′ ′⟩⟨s ′ ′ ′|) and tracing yields the result.
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