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Abstract

We show that, during adiabatic evolution, any changes in entanglement can be attributed to a
succession of avoided energy level crossings at which eigenvalues swap their eigenvectors. These
swaps mediate the generation and redistribution of entanglement in multipartite systems. The
efficiency of this redistribution depends on the narrowness of the avoided level crossings and thus
constrains the speed of adiabatic evolution. Moreover, we relate the amount of entanglement
involved to the ruggedness of the energy landscape, which directly affects the hardness of a
computational problem. This enables an analysis of computational complexity and quantum
advantage from the point of view of entanglement requirements. Applied to adiabatic quantum
computation, our findings directly relate the computation’s speed to its utilization of entanglement
as a resource. The same principles extend to gate-based discretized adiabatic quantum algorithms,
including those for Hamiltonian simulation and combinatorial optimization.

1. Introduction

Entanglement, a phenomenon without a classical analog, is an essential resource for quantum technologies.
In this work, we analyze its dynamics during adiabatic evolution and show how this resource is generated and
redistributed within a multipartite quantum system.

We find that any change in entanglement during adiabatic evolution can be attributed to avoided energy
level crossings where eigenvalues swap their associated eigenvectors. We show that these exchanges constitute
the fundamental mechanism responsible for modifying the system’s entanglement structure. Furthermore,
the extent of these changes depends on the narrowness of the avoided crossing: the narrower it is, the more
significant the entanglement change. This, in turn, constrains the permissible speed of the adiabatic
evolution, which is limited by the size of the spectral gap at such narrowly avoided crossings. Therefore, our
results provide new insights into the relationship between an adiabatic quantum computation’s (AQC’s)
maximum speed and its use of entanglement.

We also relate the amount of entanglement required to the ruggedness of the energy landscape, which
affects the hardness of a computational problem. Rugged landscapes are characterized by many
well-separated low-energy local minima and typically correspond to classically hard problems. In such cases,
the ground state must explore and coherently superpose computational basis states that are widely separated
in Hamming distance. This leads to intermediate quantum states with high multipartite entanglement. For
example, in optimization problems where local minima are far apart, the adiabatic evolution must
transiently pass through superpositions of these distant configurations, thereby generating and redistributing
entanglement across many subsystems. These entanglement manipulations are governed by the mechanics
outlined above: eigenvector swaps at narrowly avoided level crossings.

These findings are applicable to AQC [1-6], a model known to be equivalent to standard gate-based
quantum computation up to a polynomial overhead. Also, this work extends naturally to gate-based digitized

© 2025 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Systems A and A are prepared in an entangled state. The time evolution operator, U, is adiabatically generated by a
Hamiltonian which acts nontrivially only on system AB.

adiabatic algorithms such as the quantum approximate optimization algorithm (QAOA) [7, 8] and the
discretized adiabatic quantum algorithm used in Hamiltonian simulations [9-12]. Consequently, any change
in entanglement and associated computational slowdown in continuous evolution will also manifest in the
gate-based counterparts.

1.1. Setup

In order to analyze the basic mechanics underlying the generation and redistribution of entanglement during
adiabatic evolution, we consider a setup consisting of three systems, A, A, and B. This tripartite configuration
provides the minimal and general framework for analyzing entanglement transfer using the formalism of
quantum channels, which capture how entanglement is redistributed between subsystems. Two systems
suffice to generate or destroy entanglement; three systems are required to meaningfully track its
redistribution.

We take the Hilbert space of these systems to be finite-dimensional, which is justified as long as the
systems possess finite size and a finite energy budget. Systems A and A are assumed to be initially entangled.
During the subsequent unitary time evolution, systems A and B interact adiabatically while system A remains
a non-interacting ancilla, as illustrated in figure 1. This setup allows us to analyze how the interaction
generates entanglement between A and B, and also how A, which was initially entangled with A, can become
entangled with system B and/or with system AB. To this end, we will consider a quantum channel from A to
A’ and the complementary channel from A to B', which together formalize how entanglement is
redistributed during the evolution. We will use Rényi entropy-based coherent information to analytically
quantify the extent of entanglement redistribution among partitions.

Intuitively, a tripartite setup captures the redistribution of entanglement between subsystems, or the loss
of entanglement due to interaction with an external environment. For example, A, A, and B could each be
qubit systems, where B acts as a target that acquires entanglement from A, which is initially entangled with A.
Alternatively, A and A could form an entangled pair, with B representing an environment that extracts
entanglement from AA through its interaction with A.

1.2. Methods

We consider the dynamics generated by a generic Hamiltonian of the form Hy 4 g(#) Hint, where the function
g(t) is called an adiabatic schedule that increases from zero to g(T) > 0 slowly enough for the evolution to be
adiabatic. Our overall task is to understand the evolution of the entanglement in the system AAB. For this, we
will decompose the evolution into a sequence of more manageable segments by employing the spectral and
adiabatic theorems. First, we use the spectral theorem to decompose Hiy; into rank-one projectors,

Hine = >, Au [Va)(va|. We then reschedule the adiabatic evolution by sequentially adiabatically adding, or
‘activating, these projectors. We start with H, and then one by one we adiabatically add i,|v,) (v,| by dialing
the prefactor p, of each projector |v,){v,| from p, = 0 to p,, = g(T)\,.. In order to arrive at the final
Hamiltonian Hy + g(T)Hiny, each of these adiabatic activations of a rank-one projector takes the form

H(p) =D+ plv)(v] (1)
where D is the Hamiltonian incorporating previous activations, |v)(v| := |v,){v,| is the projector that is next
to be activated, and p := p,, is a schedule function adiabatically swept from the initial z = 0 to its final value

H=2g ( T)An

This technique may be interpreted as a piecewise scheduling protocol, in which rank-one projectors are
sequentially activated and remain active thereafter. The cumulative effect of these activations reconstructs the
full interaction Hamiltonian, thereby faithfully implementing the complete adiabatic evolution. Although
this schedule is physically sound and captures the full dynamics of the process, it is not intended as a
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practical computational scheme. Rather, it serves as a mathematically convenient framework for deriving
theoretical insights into the behavior of entanglement.

Having introduced the sequential activations of projectors, we can study the evolution of entanglement
within a single activation. Specifically, for each activation of a projector, we track the evolution of the
eigenvalues s, (1) and eigenvectors |s, () in H(p)|s, (1)) = su(pe)]sn (1)) as g is dialed in from 0 to its final
value. This is a useful decomposition because it allows us to recruit the recent results in [13], which
nonperturbatively describe the evolution of the eigenvalues s, (1) and eigenstates |s, (1)) of Hermitian
operators H(p) for all D and |v), in finite-dimensional Hilbert spaces.

By applying these methods to the interactions in the multipartite system A, A, B, we show that, during
each activation of a new projector, the generation and transfer of entanglement decompose into a succession
of avoided level crossings at which, crucially, two eigenvalues exchange eigenvectors. These eigenvector
exchanges constitute the fundamental mechanism by which entanglement is generated and redistributed.

1.3. Structure of the paper

e Section 2 provides an intuitive overview of key findings, highlighting conceptual points and using
visualization.

e Section 3 introduces several lemmas that serve as basic mathematical preliminaries.

e Section 4 establishes conditions for maximizing the transfer or preservation of entanglement during the
adiabatic interactions of A and B.

e Section 5 appendix A demonstrate that complete entanglement transfer, or preservation, induces a clearly
structured evolution of the eigenspectrum and eigenvectors of the total time-dependent Hamiltonian of the
system AAB. Further, a link is established between the entanglement dynamics and the permutation group.

e Section 6 establishes a direct connection between the maximum speed of AQC and the generation and
transfer of entanglement. Specifically, it relates the narrowness of avoided level crossings to the efficiency of
entanglement dynamics during the evolution.

e Section 7 shows that the computational hardness of, for example, problems of combinatorial optimization,
in the sense of the ruggedness of its cost function landscape and the corresponding Hamming distance of
low energy candidate solutions, can be directly translated into the need for large amounts of temporary
multi-partite entanglement during the corresponding adiabatic computation.

e Section 8 introduces and applies measures of coherent information that are useful for non-perturbative
quantifying the transfer of entanglement among subsystems.

2. Intuitive overview of the results

As indicated above, our strategy is to decompose a given generic adiabatic dynamics into a succession of
adiabatic ‘activations’ of rank one projectors, and then for each activation to track the evolution of the
eigenvectors and eigenvalues. Here, each activation is described by Hamiltonian of the form

H(u) = D+ w|v)(v|, where p is adiabatically dialed from g =0 to its final value u = g(T)\,,, and D is the
Hamiltonian at the end of the prior activation. With the notation D|d,,) = d,|d,), we have d,, = s,(0) and
|dn) = |54(0))-

During each of these activations, i.e. as a p is adiabatically swept from g =0 to its final value p = g(T)\,,,
a succession of avoided level crossings occurs, see [13]. As we show in the present paper, if the system is
subdivided into subsystems, it is at these avoided level crossings that the generation and transfer of
entanglement among the subsystems occurs. This is because at each avoided level crossing, a pair of
eigenvalues swaps their eigenvectors.

These key dynamics are most clearly seen in those cases where |v) is not parallel but almost parallel to an
initial eigenvector |s,(0)) = |d,) of the initial Hamiltonian D. In these cases, which we will call edge cases, any
changes of the entanglement among A, A, and B while adiabatically sweeping z from =0 to pn = g(T)\,
always occur suddenly at specific values of 1 that we will call critical u values. It is at these critical u values,
two energy eigenvalues, say s, (1) and s,11 (1) narrowly avoid each other and swap their eigenvectors, |s, (1))
and |s,+1(p)), thereby changing the structure of entanglement. In the non-edge cases, characterized by
generic |v), the behavior remains qualitatively the same, except that the level crossings are avoided with
greater gaps, and the eigenvector swaps are less sudden.

The fact that in edge cases, i.e. for narrow gaps, each involved eigenvector evolves into an almost
orthogonal and therefore very different eigenvector over a very small range of values of ;s implies that these
p-values need to be traversed particularly slowly for the evolution to remain adiabatic. When the system is a
multi-partite system then, as we will show, this implies a relation between the narrowness of avoided level
crossings and the efficiency of entanglement transfers. In this way, an AQC’s utilization of the resource of
entanglement can be related to the maximum speed of that computation.
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Eigenvalue and Eigenvector Evolution
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Figure 2. The dynamics of the eigenvalues of H(1) for a generic choice of D and with |v) chosen to be (a) a trivial case, (b) an
edge case and (c) a non-edge case. The vertical gray bars indicate where avoided level crossings are.

Before we present the mathematical details, it will be useful to establish intuition and visualizations for
the dynamics of the generation and redistribution of entanglement that we discussed above. To this end, we
will (A) visualize the dynamics of eigenvalues and eigenvectors under adiabatic activation for a total system,
(B) apply this to visualize the generation of entanglement among subsystems A and B, and finally (C)
visualize the transfer of entanglement among subsystems by visualizing how system A, which was initially
entangled with A can become entangled with B or AB instead.

2.1. Visualization of the dynamics of eigenvectors and eigenvalues during an adiabatic activation
As outlined above, we decompose the general problem into segments of adiabatic evolution, each of which is
described by a Hamiltonian of the form of (1).

We begin by visualizing the dynamics of the eigenvalues. In the simplest case, |v) equals one of the
eigenvectors of D, i.e. [v) = |d;) = [5;(0)). The adiabatic evolution is trivial in this case, as all eigenvectors
stay the same and also all eigenvalues are constant, s, (11) = s,(0) = d,,, except for n = i where we have
si(p) = si(0) + p. Since s; () is the only eigenvalue that changes, it crosses the levels of all other eigenvalues,
see the blue line in figure 2(a).

Now let us consider what we call an edge case, i.e. a case where |v) is not equal to but close to one of the
eigenvectors of D, i.e.: |v) = |d;) = [s5;(0)) for a fixed i. The adiabatic behavior is now very different: as
illustrated in figure 2(b), all level crossings are narrowly avoided as ¢ runs through the reals. We call the
values of 1 at which these level crossing avoidances occur the critical ;1 values. The eigenvalue that is
increasing while ;4 runs through 1 = 0 is the eigenvalue s;(1).

The non-edge cases, i.e. when |v) is generic and not close to an eigenvector of D, the qualitative behavior
is similar, see [13]: as p runs from p = —00 to = 400, all eigenvalues s; () strictly monotonically increase
and all level crossings are avoided, though generally less narrowly. This behavior is illustrated in figure 2(c).
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Eigenvalue and Eigenvector Evolution
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Figure 3. The evolution of the eigenvalue s; (1) and eigenvector |s¢ (1)) as a function of the parameter p. Annotations along the
eigenvalue curve specify the eigenvector corresponding to si (). As p runs from left to right, it passes two critical p values, the
eigenvector |si(p)) first transitions from [sg (1)) & [s¢(0)) = |di) to |sk(p)) = |v) and then to |sp (1)) =~ |dks1)-

1.00 1

— {dols)
0.75 1 - {dals)
0.50 — {da|s)
— {ds]s)
0.25 -
0.00 A

—— Eigenvalue d>
—— Eigenvalue ds
—— Eigenvalue s

Figure 4. Example of an edge case with |v) & |d), illustrating the eigenvalue s; (1) changing its eigenvector |s(x)) when passing
through critical i values (indicated by gray vertical dashed lines).

We now address the dynamics of the eigenvectors |s;(x)). In the trivial cases, as in figure 2(a), the
eigenvectors do not change. In the edge cases, |v) ~ |d;) = |5;(0)) for a fixed i, as illustrated in figure 2(b), let
us consider the k’th eigenvalue, di = s;(0) of D. Initially, as y is running from p = 0 to larger values, s;(u)
and its eigenvector remain approximately constant: s; () = s¢(0) = dy and |sp(1)) = |s¢(0)) = |di). Then, at
a critical p1 value, the eigenvalue s; (1) starts to grow, see figure 2(b). At the same time, at this critical u value,
the eigenvector |si(1)) changes quickly from |si(1)) = |s¢(0)) = |dk) to |si(p)) = |v).

As p grows further it eventually reaches the next critical y value, where the eigenvalue si (1) changes its
eigenvector again, now from |sg(u)) = |v) to |si(1)) = |sk+1(0)) = |dk41)- This is illustrated in figure 3.
Notice that for k = i, we have [s;(11)) = |v) as p passes through p = 0.

The suddenness with which an eigenvalue changes its eigenvector as 14 moves through a critical point is
illustrated in figure 4. The larger picture is, as shown in figure 2, that at each critical ¢ value two eigenvalues
narrowly avoid crossing. Figure 5 visualizes what this means for the eigenvectors |si(12)) and |sg11 (1)) of two
eigenvalues s (1) and sy () at a narrow crossing avoidance: the eigenvalues quickly trade their eigenvectors.

In later sections, we will show that the extent of crossing avoidance and suddenness of eigenvector change
is determined by a single parameter €. In non-edge cases, as in figure 2(c), the situation is qualitatively the
same. All level crossings are avoided, and the eigenvalues partially trade their eigenvectors, although the level
crossings can be avoided less narrowly and can also occur at values other than the eigenvalues dj. Further,
during a phase in which an eigenvalue s, (1) quickly grows, its eigenvector |s, (1)) need no longer
approximate |v). See [13] for the details. In comparison, the edge cases are characterized by very narrow level
crossing avoidances that occur suddenly, and the associated eigenvector swaps are correspondingly sudden.
Hence, the edge cases offer sharper tools for analyzing or controlling entanglement dynamics. We will,
therefore, pay particular attention to the edge cases.
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Eigenvalue and Eigenvector Evolution
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Figure 5. At a critical p value, the eigenvalues s (1) and sy (@) of H(u) = D+ p|v) (v] trade their eigenvectors.

Two-partite System, Eigenvalue and Eigenvector
Evolution
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Figure 6. Eigenvector swap at a critical p value, in a two-partite system AB.

2.2. Visualization of entanglement generation in the bi-partite system AB
By applying these findings to a system that is divided into two subsystems, A and B, we can track the dynamics
of the entanglement between A and B during adiabatic evolution. The analysis can be applied to any
activation of a projector, i.e. with any starting Hamiltonian D. However, for the purpose of gaining intuition,
it is convenient to consider an initial Hamiltonian D that is of the typical form of a free Hamiltonian,
D = Hy ®1I 4 I® Hp. We denote the spectra of Hy and Hp by {a;}, {b;} and we assume them to be generic,
i.e. such that the spectrum of D is non-degenerate. We denote the eigenbases of A and B by {|a;) },{|b;)}.
Further, when activating a projector |v)(v|, we will, for clarity, focus on edge cases, |v) = |a;)|b;), for fixed
iand j. The dynamics at each critical p value can then be deduced from figure 5: as two neighboring energy
eigenvalues narrowly avoid crossing at a critical 1 value, they trade their eigenvectors: prior to reaching the
critical p value, the eigenvector |si(1)) of the eigenvalue s () is |sg(p)) = |v), while the eigenvector |si1 (1))
associated with sg41 () 18 |sk41 (1)) = |di41). Passing the critical p value, the eigenvectors switch: the
eigenvector |si(1)) belonging to the eigenvalue si(p) transitions to |sg()) = |di1), and the eigenvector
Isk+1 (1)) belonging to the eigenvalue si 1 (1) transitions to [si41 () & |v). The application to the
two-partite system AB is illustrated in figure 6, where we can read off two observations on the dynamics of
the entanglement in system AB:

Observation 1. Let us consider the edge case where |v) is chosen to be almost parallel to the unentangled
eigenstate of the initial Hamiltonian; i.e. |v) & |a;) }bj>. Suppose the system is initialized in an unentangled
eigenstate [1)(0)) = |ax) |b,) of the initial Hamiltonian D. As 4 is adiabatically increased, this state evolves
into |1 (1)) =~ |v), which is also a product state. Eventually, the system encounters an avoided level crossing at
the critical value picritical- Precisely at this value, the system’s state becomes a superposition of |v) ~ |a;) |b]-> and
another product eigenstate, say |ay ) ’bp>, associated with the nearby avoided eigenvalue. Therefore, at piciical
the state of the system is an entangled state. This otherwise temporary entanglement can be made permanent
by freezing the value of y at the critical value.
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Three-partite System, Eigenvalue and Eigenvector
Evolution
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Figure 7. Example of an edge case in the three-partite system AAB. As two eigenvalues avoid a level crossing, they swap their
eigenvectors, which can induce changes to the entanglement in system AAB.

Observation 2. In edge cases, any initially unentangled state that is not an energy eigenstate can become
entangled during an avoided level crossing, and this entanglement persists after the avoided level crossing.
Assume, e.g. that system AB was prepared in an unentangled state that is a superposition of energy eigenstates,
such as the state (|ax) + |am))|by). During the time evolution, at a critical j value, this state can become per-
manently entangled as, e.g. the state |ax)|b,) can be swapped, for example, for the state |ax) |b,1), so that after
the avoided level crossing our system is in the entangled state |ax) |by+1) + |am) |bp). Unlike in the case of obser-
vation 1 above, here the newly generated entanglement between A and B persists for values of i larger than the
critical p. In this sense, entanglement between A and B can be said to be redistributed during an eigenvector
swap at an avoided level crossing.

2.3. Visualization of entanglement transfer in the tri-partite system AAB
Similarly, in the tripartite system AAB, let us consider initial Hamiltonians of the form D = H TRIRI
+I® Hy ®1+ I®I® Hp and activate a projector though H(u) = D+ pu(I® |v)(v|) which acts on the
Hilbert space H4 ® Hp. Similar to the two-partite case, the structure of the entanglement in the tri-partite
system AAB can only change when eigenvalues avoid crossing and thereby swap their eigenvectors. Again,
this is particularly clear in edge cases, as is illustrated in figure 7, where we can read off the basic dynamics of
the entanglement in system AAB.

First, since the ancilla A does not participate in the interaction, we obtain analogs of Observations 1 and
2 for system AB, if the ancilla A is prepared unentangled. For example, since the result of any narrowly
avoided level crossing is that the two eigenvalues swap their eigenvectors, any unentangled eigenstate of D,
such as [s,11 (1)) ~ |a,)|ax) |by) ultimately evolves into another unentangled eigenstate of D, such as
|sut1(p)) = |a,)|v) and therefore no entanglement has been generated after an avoided level crossing. Except,
during the brief period when the swap occurs, i.e. close to a critical p value, an initially unentangled
state such as here [s,4.1 (1)) ~ |a,)|ax)|by) will be a linear combination of the form: [s,4 (1)) ~ «a;)
lax)|bp) + Bar)|v). We notice that if |v) ~ |a;)|b;) with i # k and j # p, then AB will be entangled around the
critical p value. As anticipated, since the ancilla is here a mere spectator, this matches observation 1 above for
the bipartite case. Clearly, also observation 2 for the bipartite system AB above has an immediate
generalization to the tripartite system, if the ancilla system A is chosen to be initially unentangled.

Finally, we analyze the fundamental processes in which an interaction induces a transfer of entanglement.

To this end, we assume that A and A are initially entangled and we use our findings above to study how
an interaction between A and B can turn the initial entanglement between A and A into entanglement
between A and either B or AB. Consider, for example, the initial state of the form

1
= —— (|a,)|ax)|b,) + |as)|ai)|b 2
with r # s and k # I. Here, systems A and A are entangled, and system B is unentangled. Then, during the
evolution, one of the two vectors on the RHS, say |a;)|ax) |b,) will be the first to be swapped for |v) at some
critical p value. After passing this critical i value, the initial state [¢)y) will therefore have adiabatically
evolved into:

Y1) == —= (lan|v) +as)|a)|b,)) (3)
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We can now easily read off, for example, that by choosing |v) ~ [a;)|b,) with g # p, the state |¢)1) possesses
entanglement only between A and B while A becoming unentangled:

1 . ~
) ~ 75 (lar)|ar)|b) + |as)|ai)|b,)) (4)
For this choice of |v), the interaction between A and B, therefore, transferred the entanglement that A
initially possessed with A to B, while passing the critical p value.
Similarly, it is clear that the choice of |v) = |a,)|b,) with t # [ and q # p, transfers the entanglement that A
initially possessed with A to system AB, by yielding instead the tri-partite entangled state:

1 . -
[t} = 7 (Iar)a:) |bg) +1as)|a)|bp) ) (5)
For this choice of |v), the interaction between A and B therefore transferred the entanglement that A initially
possessed with A to the system AB.
The adiabatic dynamics of entanglement in n-partite systems for large n can be analyzed similarly, and we
will use this fact in section 7 where we will apply these results to AQC.

2.4. Application to AQC for combinatorial optimization

These results can be applied to AQC, to address, for example, combinatorial optimization problems. In what
follows, we relate the entanglement generation and its subsequent loss to the hardness of an optimization
problem. In optimization, we seek min(f{x)) for x € {0,1}" by searching for the ground state of a problem
Hamiltonian H, = ) _f(x) |x)(x|. To this end, we analyze an AQC protocol that uses a schedule

H(t) = Ho + p(t)Hp, where the coupling /() increases monotonically. As ju(t) grows, terms p(#)f(x) |x)(x|
corresponding to high-cost states |x) dominate earlier. This effectively activates the projectors sequentially
from those of highest cost on down. The adiabatic evolution, therefore, forces the evolving ground state
|0(#)) to become orthogonal first to the highest-cost basis states |x) and the evolution then systematically
eliminates successively less and less poor candidate solutions.

At later stages of the adiabatic evolution, the ground state |0(¢)) is, therefore, a superposition of the
remaining low-cost candidate solutions {|xjow) }-

Interestingly, we can relate the amount of entanglement in such superpositions to the classical hardness
of the problem being solved. Consider a case where the energy landscape is classically hard in the sense that
low-energy configurations {|xjo) }, defined below some energy threshold, are typically separated by large
Hamming distances. A quantum state that superposes basis states with large Hamming distances typically
exhibits entanglement, since it does not factorize across qubit subsystems. For example, consider the case
where the instantaneous ground state |0(¢)) is a linear superposition of computational basis states with
pairwise Hamming distances of at most two:

|0(#)) = ac|000) + ad |001) + bc|010) + bd|011)
This state factorizes completely as a product state:
0(2)) = |0) @ (a]0) +b]1)) © (c|0) +d][1))

In contrast, if we use the same non-zero coefficients but superpose basis states that are more widely separated
in Hamming space, we obtain genuine tri-partite entanglement:

10(£)) = ac|000) + ad|111) + be|011) + bd [001)

Due to the larger pairwise Hamming distances between the basis states, the superposition above cannot be
factorized, as all three subsystems are multipartite entangled. The most extreme case occurs when the
superposition involves basis states with the maximum pairwise Hamming distance, resulting in maximal
multipartite entanglement. A canonical example is the GHZ state, given by 1/1/2(]000) + |111)), which
exhibits tripartite entanglement and cannot be decomposed into a product across any bipartition. Such a
state represents two local minima, which are separated by a distance of 3. Hence, moving from one local
minima to another requires at least three local moves (bit flips) over higher-energy barriers. We see that large
Hamming distances between local minima imply classical hardness, as we need to traverse the energy
landscape over long distances and do more work to avoid being trapped in local minima. From the quantum
mechanics perspective, we get states that are multipartite entangled.

Generally, the poor factorizability directly implies that the intermediate ground state |0()) possesses high
multipartite entanglement. Conversely, smoother landscapes (classically easier problems), where regions of
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low-energy states are nearby (short Hamming distances), result in intermediate states with lower
entanglement. Therefore, a key insight is that classical problem hardness, characterized by a rugged cost
landscape with large Hamming distance local minima, necessitates the development of significant temporary
multipartite entanglement in the instantaneous ground state |0(¢)) at intermediate stages of the AQC process.

Let us here recall that one usually chooses the initial state to be an equal superposition of all
computational basis states, which can be written as the tensor product of plus states. Since this initial state is
a product state, it is unentangled. Also, the final state, assuming it is unique, is unentangled. This implies
that, for optimization problems with local minima that possess large Hamming distances, the adiabatic
evolution must build up and then destroy a large peak of entanglement.

We have shown that all changes in entanglement occur at avoided level crossings, and that the
narrowness of these crossings determines the efficiency of these changes. This insight provides new tools for
exploring how the hardness of a problem, such as an optimization task, relates to the magnitude and
character of the entanglement peak during AQC, and how this peak, in turn, necessitates a slowdown due to
narrow avoided crossings.

3. Mathematical preparations

As motivated above, we consider a time-dependent Hamiltonian that acts on an N-dimensional Hilbert
space H and takes the form:

H () :== Hp + g(t) Hint (6)

Here, Hy and Hjy, are Hermitian operators acting on . We refer to H(0) = Hy as the initial Hamiltonian,
and for some suitably chosen final time T > 0, we call H(T) the final Hamiltonian. The coupling function
g(t) is assumed to monotonically increase from g(0) = 0 to a final value ¢g(T'), slowly enough for the
evolution to be adiabatic. As anticipated above, we break down this problem into more manageable parts. To
this end, we invoke the spectral theorem and rewrite Hj,, as a weighted sum of rank one projectors,
Hine = D> Ak [Vi)(vi|. Instead of adiabatically adding all of g(T)Hiy: simultaneously to Hy, as in (6), we
adiabatically add the weighted projectors g(T) ¢ |vi)(vk| one by one to H.

Each activation of a projector is described by a time-dependent Hamiltonian of the form:

H(1) := D+ p () [v)(v] (7)

Here, for a fixed index k, we define |v){v| := |vg){v|. For the purpose of activating an individual projector, it
is convenient to denote the starting and the final time of the activation of this new projector by t =0 and
t = ty, respectively. We choose /(1) to be a function that monotonically runs from £(0) = 0 to pu(t) = g(T) Ak
slowly enough for the evolution to be adiabatic. We now focus on the dynamics during the addition of an
individual projector.

Before we get to the main results, we present a useful lemma which shows that for any real value s, there is
an eigenstate |s) of the Hamiltonian H(t) in (7) for which the eigenvalue nonperturbatively an explicit
expression can be given and for which s is the eigenvalue.

Lemma 1. Let H(t) in (7) be the Hamiltonian of a quantum system with a non-degenerate spectrum. Let |v) be
an arbitrary generic vector and dy be the eigenvalues of D. For any eigenvalue s := s(u(t)) # di of H(t), the
corresponding eigenstate |s) is given by

|s) =~ (sT=D) ™" v}, (8)
where 7y is a normalization constant defined as

1
S e )
I(sT=D) ™ )

The lemma states that the eigenstate |s) can be explicitly expressed as a function of |v), the initial
Hamiltonian D, and the eigenvalue s. The proof of this lemma and of the subsequent propositions in this
paper are in the appendices. The lemma can be combined with the adiabatic theorem [1, 3]:

Lemma 2. Let H(t) in (7) be the Hamiltonian of a quantum system whose spectrum is non-degenerate, and let
|v) be arbitrary. Let u := t/t € [0,1] and [i(u) := p(uty), then the rescaled version of H(t) is:

H(u) == D+ i (u) [v){¥ (10)
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Assume that the system is initially in the n’th—level energy eigenstate [3,(0)) = |d,,) of H(0) = D. Suppose that it
undergoes adiabatic evolution until a final time tg, which is chosen in accordance with the condition of the
adiabatic theorem [3]:

, n#Em (11)

Here, Spm (1) = 5,(1t) — 5,0 (1) and 3x(11) is an eigenvalue of H(u). Then, the evolved state of the system at time t;
will in effect remain in the instantaneous eigenstate |s,(u(ty))), that is

1U (1) ldn) = Jsn (11 (1)) ]| = 0, (12)

U(t) := Texp{—i/otfH(t)dt}, (13)

and T denotes the time-ordering operator. In the limit of t— oo, we have the exact relation:

U (8 ) =[50 (1 (5))) = s (1 (49) 1= D) " I} (1

The statements of lemma 2 can be easily derived by applying the adiabatic theorem in [3] to the result of
lemma 1.

In this paper, we always assume that tis chosen sufficiently large to ensure that the time evolution
operator U(ty) evolves the initial eigenstate |d,) into the eigenstate ‘sn(tf)> to any desired target accuracy, so
that, in effect, we can write U(ty) |d,,) = |s,(ty)).

where

Remark. The reason for using the unitless variable u in condition (11) traces to the observation that tradi-
tional conditions for adiabaticity had missed the fact that exceptional non-adiabaticity can build up through
resonances from seemingly adiabatic oscillatory time dependence in the Hamiltonian, see [3]. The condition
that the Hamiltonian can be written as a function of the unitless time variable u excludes such oscillatory
behavior since it would set a new scale. This, in turn, renders condition (11) robust. For a detailed review,
see [5].

3.1. The relationship between the coupling strength 1.(t7) and the final eigenvalue s.
It would be desirable to be able to express the eigenvalues, s, (1) of a Hamiltonian H(u) = D + u|v)(v| as an
explicit expression in radicals, e.g. by solving explicitly for the roots, s, (1), of the characteristic polynomial
of H(p). As Galois theory showed, this is impossible for Hilbert space dimensions larger than 4, see [14]. In
this section, we present a lemma, see [13], that describes a method to bypass this limitation by inverting the
problem, i.e. by calculating 1 (s), and by then using the Lagrange inversion theorem to obtain the s,(x) not in
terms of radicals but as a power series whose coefficients are all explicitly known.

We start by noticing that it is possible to give an explicit expression for p as a function of the eigenvalue s
for all real s. Concretely, working in the eigenbasis {|di) }} ' of the initial Hamiltonian D, we have:

1
|vi?
(Zs—dk> (15)

In the equation above, vy := (v|dy) and the dj are the eigenvalues of the initial Hamiltonian D.
Therefore, one can fix s and then use (15) to obtain the desired coupling strength y so that H(u) has s as
an eigenvalue.

Lemma 3. Let s be an arbitrary real number. Consider the Hamiltonian defined by H(s) = D + u(s) [v){(v),
where i(s) is as in (15) and |v) is arbitrary. Then, s is an eigenvalue of H(s).

Allowing s to change over time, we will, for simplicity, write H(¢) = H(s(t)). Incorporating the principles
from lemmas 2 and 3, a comprehensive non-perturbative framework can be formulated for the
determination of final eigenstates and eigenvalues of a time-dependent Hamiltonian H(¢). Initially, one
selects a real number s and employs lemma 3 to define the final Hamiltonian H(#s). Subsequently, lemma 1
provides the exact form of the final eigenstate associated with H(ty).

10
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Finally, we can use the Lagrange inversion theorem to obtain, see [13]:

oo e n—1 N IVP S0
sw=d-3_ — > > H 1 (16)
P s e g ()

S ki=n—1p1#r,.. puFr

Recall that we start with Hy and then during the adiabatic evolution toward the final Hamiltonian

Hy + ¢(T)Hint, we adiabatically add the projectors g, |v,) (v,| one by one by dialing their prefactor i, from
ty =010 p, = g(T)\,. The exact result (16) now allows us to perform all these successive additions of
projectors explicitly, thereby nonperturbatively yielding the running eigenvectors and eigenvalues.

4. Transmission and preservation of entanglement in tripartite systems

In this section, our goal is to identify the elementary principles that govern entanglement transmission or
preservation under addition of the initial Hamiltonian D and the coupling term zi(¢) [v){v|. Therefore, we
investigate the dynamics of entanglement within a tri-partite system situated in the Hilbert space
H; @ Ha @ Hp. We assume here that system A is initially prepared entangled with an ancillary system A,
such that A purifies A. The system B is assumed to be initially pure and unentangled with both A and A.
Subjected to a time-dependent Hamiltonian as in (17), the composite pure system AAB then undergoes
adiabatic evolution while A remains inert. The interaction between A and B induced by the term 1(t) [v)(v|
can then not only entangle the systems A and B but can also transfer entanglement that A initially possessed
with A to B or AB. The setup is illustrated in figure 1. For example, A and A might represent qubits in a
quantum processor, while B could describe another qubit of the processor or an environment.

We assume that the following Hamiltonian interaction governs the adiabatic evolution:

H(t)=I®Hs @1+ IQI® Hg + pu(t) [ |v)(V] (17)

Here, H4 and Hp denote the Hamiltonians of systems A and B respectively. We define the initial Hamiltonian
DasD:=Hy ®I + I® Hp. Subsequently, the total Hamiltonian in (17) simplifies to:

H() =1 D+ pu() I |vXv| (18)

For this system, let {|a;) } and {[b;)} represent the sets of eigenstates corresponding to systems A and B
respectively. Additionally, we introduce {|a;) } as an arbitrary basis for the ancillary system A. We let the
system AA start in a pure state. For some fixed i and j, we define the state of AA to be

Yxa) = i |as) |ai) + o |aj) |a;) (19)

where ;i and «jj are complex coefficients. We may assume, for example, an entangled state [¢)7,) with
|laii|> = |ai> = 1//2. Then the joint initial state of AAB is:

[ias) = (cuiildi) |ai) + o |ai) a;)) [bo) (20)

Now, we are ready to establish the conditions for maximizing the transfer or preservation of
entanglement during the course of adiabatic evolution. That is, we show that for an appropriate choice of |v)
and pu(ty), it is possible to transmit entanglement in the sense that A’s initial entanglement with A turns into
entanglement of A with B, while A becomes pure and therefore disentangled from both A and B. Conversely,
we show how to reverse the entanglement transmission so that A is again entangled with A, and B returns to
being in a pure state.

Furthermore, we find that transferring entanglement is computationally expensive due to the need for a
slower rate of adiabatic evolution. As we will discuss in section 6, selecting the state |v) to maximize
entanglement transfer leads to reduced energy gaps of the Hamiltonian in (17), which is important because
the minimum duration, t;, of the evolution is determined by the minimum energy gap, see, e.g. (11). We find
that highly efficient entanglement transfer necessitates a significantly prolonged evolution time.

Another interesting finding is that entanglement transfer and preservation are not continuous processes.
We show that entanglement relations between systems can abruptly reverse to their original state even if 1(#;)
and |v) are changed in a continuous manner.

Let us first start with the trivial choice of |v). Let |v) be an eigenstate of the Hamiltonian D = H4 ® I+
I® Hp. That s, |v) = |a,) |bx) for some fixed p and k. In this case, the initial Hamiltonian I ® D commutes
with the interaction Hamiltonian 1(£)I ® |v)(v| and the final state |15, ,,5,) only acquires relative phases:

[z a0p) = ciwii |di) |ai) [bo) + cujwi |aj) |a;) bo) (21)
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where |w;i|, |wj;| = 1 for some fixed i and j. Importantly, AA remains entangled and pure, and B is
unentangled and pure. Therefore, the entanglement structure remained unchanged. In this trivial case, we
see that |v), being an eigenstate of D, cannot affect the entanglement characteristics of any of the systems.

It is reasonable to assume that |v) that maximizes the transmission or preservation of entanglement must
be a linear combination of specific eigenstates of D. Indeed, this is the case. However, surprisingly, such |v)
must be arbitrarily close to exactly one of the eigenstates of D and yet not be equal to it. Let us use the
shorthand notation j;, := p(ts) and define vy, as the coefficients of |v) in the eigenbasis {|ax) |bp) }ip- That s,

Vkp = <v|akbp> . (22)

With this notation, we now present the following theorem, which provides a construction of the edge case |v)
discussed earlier.

Theorem 4. Let n = dimA and m = dim B. For some fixed indices i < j, suppose the eigenvalues of D are
ordered as

dip <djy <--- <djp <dj. (23)
Let system AA be entangled and B be in a pure, unentangled state:
|9 iap) = i |d@i) |ai) |bo) + avji|a;) |aj) |bo) (24)
Fix an index ¢ > 0 such that diy < diy < djo. For € > 0, if |v) is such that

1—(nm—1)e fork=ip=1{,

Vip = (25)
& € otherwise,
and
djo — di¢ dji — di
S i Ll 26
e (G i 26

Then, as € — 0, the entanglement of the evolved system is such that A becomes entangled with B, and A becomes
pure and unentangled. Furthermore, if

dj — di

(27)
[vie|>

Mtf >

then as € — 0, the entanglement of the evolved system is such that A becomes again entangled with A, and B
becomes again pure and unentangled.

The theorem, therefore, provides us with a construction of interaction Hamiltonians j(t) [v)(v| to
accomplish transfer or preservation of entanglement with the edge case |v). Furthermore, the theorem
explicitly identifies the values of 1(t7) at which A transfers its entanglement with A to B, as detailed in (26). Tt
also specifies the precise values of 1i(tf) required to revert the entanglement relationships back to their
original configuration.

We note that since the edge case |v) in (25) has the dominant component vjy /= 1 for € < 1, it is close to
an eigenstate |a;) |by) of the initial Hamiltonian D. However, |v) significantly differs from |a;) |by) in its effect
on the final system’s entanglement structure. We see that entanglement transfer or preservation is not
continuous relative to the change of |v). For example, one might construct |v) with sufficiently small € and
some finite z,, such that A becomes entangled with B and A becomes pure and unentangled. However, if €
reaches its limit 0, i.e. ¢ =0, then |v) = |a;) |b¢) and the structure of entanglement abruptly reverts to its
original state. This is because, as we have seen, eigenstates of D do not change the entanglement structure of
the initial system, i.e. A remains entangled with A and B remains pure and unentangled.

The construction of |v) in theorem 7 enables maximal changes in entanglement and explicitly identifies
the values of y at which these changes occur. While slight variations of this construction are possible, they
generally come at the cost of less transparent and significantly more cumbersome mathematical expressions.
Nevertheless, the core principles for the edge case scenario remain unchanged: |v) must have a dominant
component aligned with an eigenvector |d) of the initial Hamiltonian D, satisfying (v|d) = 1 — O(€?). For
any other eigenvector |d’) of D, we must have (v|d’) = O(e), where e < 1.
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5. Entanglement transfer/preservation induces structured eigenssystem dynamics

The dynamics of eigenvalues and associated eigenstates of H(#s), under the influence of 1u(t) |v)(v| as
constructed in theorem 4, play a crucial role in understanding entanglement transfer and preservation in
quantum systems. In this section, we explore these dynamics in detail, showing that each eigenstate of the
initial Hamiltonian D undergoes a three-stage adiabatic evolution.

Initially, in the first stage of the evolution, an eigenstate of D remains nearly static, exhibiting minimal
change. The second stage is marked by the eigenstate closely aligning with v}, reflecting a significant shift in
its characteristics. Finally, in the third stage, the eigenstate transitions towards a neighboring higher energy
eigenstate. Similar behavior can be observed for the eigenvalues. Each eigenvalue undergoes exactly the same
three-stage evolution. In the first stage, an eigenvalue remains almost static. During the second stage, the
eigenvalue increases at a speed close to 1. Importantly, only one eigenvalue at a time has a velocity near 1
while the rest remain almost static. During the third stage, the eigenvalue approaches a higher energy
eigenvalue and slows down without ever crossing it. The dynamics of this behavior are illustrated in figure 3.
This three-stage progression elucidates the mechanisms behind the subtle shifts in eigenstate positions and
energies, providing a comprehensive understanding of how entanglement properties are influenced and
manipulated through the choice of 1(ts) |v)(v| in theorem 4.

The influence of positive semidefinite z(t) [v)(v| with an arbitrary |v) is thoroughly documented in the
literature [13, 15]. Generally, the neighboring eigenvalues s; < si;1 of H(#) interlace with the neighboring
eigenvalues di < dy4 of D. This yields the interlacing inequality:

di < sp < djg1 < Sig (28)

As puy, increases from negative infinity to positive infinity, the eigenvalues of H(#) increase monotonically.
Absence of orthogonality between |v) and any eigenstate |dy) of D ensures the prohibition of energy
level-crossings for all finite /1. Conversely, if [v) is orthogonal to a particular eigenstate |dj>, then the
associated eigenvalue s; remains fixed, permitting potential level-crossings. This scenario has been previously
encountered in section 4; when |v) coincided with an eigenvector of D. In this scenario, when 4, approaches
positive infinity, a single eigenvalue increases, sequentially crossing all higher energy levels. Furthermore, we
have seen that such |v) does not change the entanglement structure for any values of /.

On the other hand, the optimal selection of |v) in theorem 4 maximizes entanglement transmission or
preservation for finite values 1, it also imposes a strict pattern in the evolution of eigenvalues sy and
eigenstates |si) of H(¢). As per the formulation of |v) in (25) with € > 0 sufficiently small, no level-crossings
occur for all finite 11, due to the non-zero components vy = (v|di) > € with any eigenstate |dy) of D.
Furthermore, considering the eigenvalue velocities total to unity [13, 15], at any moment, precisely one
eigenvalue exhibits a velocity of |1 — (nm — 1)e?|* & 1, with the rest advancing minimally with the maximum
velocity proportional to € ~ 0. Specifically, as 1, increases, a solitary eigenvalue s; ascends to the next larger
eigenvalue s;, 1 at a velocity of |1 — (nm — 1)€*|2. Due to the eigenvalue s, ascending to the almost static
larger eigenvalue s, the energy gap becomes narrower, yet no level-crossing is happening. The level-
crossing avoidance can be attributed to an eventual deceleration in eigenvalue velocity which changes from
|1 — (nm — 1)€*|? to near zero, and the larger eigenvalue sy ; acquiring the velocity of |1 — (nm — 1)€*|* and
hence avoiding the crossing with the eigenvalue s;.

Consequently, we can categorize the behavior of each eigenvalue s, of H(#) and its corresponding
eigenvector into three distinct evolutionary phases, characterized by three specific intervals of x(t). During
the initial interval Z; := (—o0, 1), the eigenvalue sy is e2—close to di with the maximum velocity
proportional to €. In the subsequent interval Z, := (j;, 11, ), the eigenvalue s; experiences an increased
velocity of |1 — (nm — 1)€?|?, indicating a more rapid ascent. Finally, in the interval Z; := (u,,+00), the
eigenvalue sy is e2—close to diy1 and resumes back to a slower pace. These intervals collectively span nearly
the entire spectrum of the real line. This comprehensive coverage allows us to predict the eigenstate |s;)
associated with any given value of 1(t) within these intervals. This observation is formally presented in the
following theorem.

Theorem 5. Let N be the dimension of the Hilbert space that H(t) acts on and {dj}?r:_ol be the increasing
sequence of the eigenvalues of D.
Fix index i and let € > 0. Suppose |v) is a vector characterized by its components v; = <v|dj> as follows:

1-(N-1)& ifj=i

. (29)
€ otherwise

Vi =
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For k> i, if pu, lies within the interval

di — di
(_007 ]|(V'|2 )? (30)

then the eigenstate |dy) of D adiabatically evolves as

Uy, |di) — |dx) ase— 0. (31)
If pu, lies within the interval
then
Uy |dx) — |di) ase — 0. (33)
If pu, lies within the interval
(W,-i-oo) ) (34)
[vil?
then
Uy |di) = |diy1) ase — 0. (35)

The endpoints of the interval in (32) deserve special attention. These are the ‘critical points’ around
which eigenstate transitions are happening. For e sufficiently small, consider the critical point
pis1 := (dgy1 — d;)/|vi]? in (32). Slightly before this critical point, say at 1 — A, the state |dy) evolves
into |d;). However, right after the critical point at 41 + Ap, the state |di) evolves into the next energy level
eigenstate |d ), while the state |dj41) evolves into |d;) ~ |v). Essentially, in the limit of e tending to zero,
this evolution behavior can be characterized as a swap: |di) and |dy1) swap places while p(t) passes the
critical point. To emphasize this remarkable fact, we present an alternative theorem that focuses on the
eigenstate transitions around the critical points.

Theorem 6 (Alternative). Let {dj}}v;ol be an increasing sequence of eigenvalues of D.
Fix index i and let € € (0,1). Suppose |v) is a vector characterized by its components v; = (v|d;) as follows:

b 1-(N-1)é& ifj=i (36)
! € otherwise
For each k > i, define py41 as:
diy1 — di
S Tzl (37)

U(t (b1 — Ap)) [di) — [di) (38)
U(t(pirr + Ap)) di) = [diey1) (39)
U(t (b1 — Ap)) [ iy 1) = dirr) (40)
Ut (pirr + Ap)) digr) — |di) (41)
In the above, A is chosen such that
0 < Ap < min{phys — fkg1, My — Mk (42)

where p < pir1 < Hit2-

14



10P Publishing

Quantum Sci. Technol. 10 (2025) 045054 E Gabbassov and A Kempf

Theorem 5 and its alternative formulation theorem 6 illustrate explicit dynamics of eigenstate transitions
around the critical points fiitical = ftk- Both theorems can be further restated in an equivalent but succinct
statement which describes a swap of states around the critical points. To get an intuition for the upcoming
statements, it is useful to examine figure 5 where we see the mechanics of a swap. Specifically, for p < picitical>
the eigenstate |sp(u)) = |v), whereas |sg1 (1)) = |dis1). However, for g1 > pigitical, we have |si(p)) & |diy1)
and [se41(p)) = |v).

Theorem 7 (eigenstates swap). Let dy| be an eigenvalue of D. Suppose that |v) is constructed as in (36). Let
tiks1 and Ay > 0 be the critical point and increment of 41 as described in (37) and (42), respectively. Then, in
the limit e — 0, we have the following relation:

Isk (k1 — Ap)) = |v) and [ser (prr — Ap)) = |diyr)
Isk (ptrgr + Ap)) = |diy1) and |spr (prgr +Ap)) = |v)

Here, for the adiabatic evolution operator U(t(y1)) of H(t), we have:
Isk () = U (¢ () |di) (43)

6. Maximum entanglement transfer is computationally expensive

In the context of entanglement transfer or preservation, the selection of the edge case |v) as defined in (25)
plays a crucial role. While this choice maximizes the transfer or preservation of entanglement, it also leads to
the minimization of energy gaps within the Hamiltonian. Consequently, the evolution time f, which
inversely correlates with the smallest energy gap according to (11), is significantly extended in scenarios of
nearly complete entanglement transfer.

This section provides a lower bound estimation for the energy gap between any two consecutive energy
levels. To achieve maximal entanglement transfer or preservation, the state |v) is configured such that one of
its components equals 1 — (dimA - dim B — 1)¢2, while the remaining components are set to €. The limit of
maximal entanglement corresponds to € — 0.

We will demonstrate that for sufficiently small € > 0, the minimum energy gap g,,i» between any two
adjacent energy levels is at the very least proportional to €2.

Theorem 8. Let |v) be constructed as in (25). For index k, let sg(1u(t)) < sa1(1(t)) be any two consecutive
eigenvalues of H(t). Then, there exists Cy > 0 such that to second order in €, we have:

Sk (1 () — s (u () = Co€* forall t > 0 (44)

Theorem 8 highlights that the minimum energy gap g, is directly influenced by the value of €. This
discovery is pivotal in establishing a relationship between the time complexity of adiabatic computation and
the dynamics of entanglement transfer or preservation. Let |v.) denote the edge-case vector constructed
in (25), and let |v) denote an arbitrary vector. By combining the result of theorem 8 with the adiabaticity
condition given in (11), we obtain the following bound:

4 (5 () ) (v, ()|

tr > 45
7 o (Coe?)’ )
8 o (1)) 015 (u)|
> max 5 , n#£m (46)
u€l0,1] Som (1)

Thus, the edge-case choice |v.) with € < 1 not only optimizes entanglement transfer or preservation but
also increases the minimum required adiabatic evolution time. In particular, the right-hand side of (45)
provides an upper bound on the minimal evolution time over all Hamiltonians where |v) is chosen
arbitrarily. That is, (45) upper bounds the standard adiabatic condition in (46) for arbitrary choices of |v).
This establishes a lower bound on ¢ required for successful entanglement transfer or preservation. Given that
(5m(u)|ve) = O(€) and (5,(u)|ve) = 1 — O(€?) (or vice versa), the expression in (45) implies a scaling of
tr=0(1/€).

To conclude, we have shown that entanglement change, such as the transfer of entanglement, necessitates
a slowdown. This follows from the fact that entanglement changes are due to eigenvalues swapping their
eigenvectors as shown in theorems 5-7. The swaps occur at avoided energy level crossings. To achieve
complete swap and hence maximal entanglement transfer, the Hamiltonian’s energy gaps must be minimized
at these crossings. The minimum time required for an adiabatic evolution, however, is proportional to the
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square of the smallest energy gap. Therefore, a smaller gap, which is necessary for efficient entanglement
transfer, requires a significantly prolonged evolution time to maintain adiabaticity, thus slowing down the
computation.

It is important to note that the redistribution of entanglement and the associated slowdown in adiabatic
evolution depend solely on the narrowness of the avoided level crossings. This implies that it is immaterial
whether we activate and manipulate a single rank-one projector or multiple projectors simultaneously. For a
complete redistribution of entanglement to occur, two eigenvalues must approach one another within a
distance of order €2, as implied by lemma 9. Therefore, the critical bottleneck remains the same: the need for
eigenvalue proximity at the scale of €2, which governs both the extent of entanglement transfer and the
evolution time via the adiabatic condition.

We complete this section by recalling the interlacing inequalities delineated in (28), which we, for
convenience, restate below:

dr < s < digr < Sk (47)

Given the construction of |v) that maximizes entanglement transfer or preservation, the eigenvalue s
converges to either d or di1 as € tends to zero.

Lemma9. Let |v) be constructed as in (25) and suppose that for k > i, we have

diy — d;
1 (t) > # (48)
Then, there exists C; > 0 such that
dir — s (p (1) < e (49)
Consequently,
€ 1
_— > . (50)
i1 — sk (n (1))~ Cie
Furthermore, if
di — d;
0<u(®) < s (51)
vil
then there exists C; > 0 such that
sk — dy < Cyél. (52)

The lemma above will be pivotal in understanding the following section, where we demonstrate the
entanglement transfer, preservation and orderly evolution of the eigenspectrum of H(t) with narrowing
eigengaps.

6.1. Qubits example

To elucidate the principles and develop intuition behind theorems 4 and 5, we analyze a model wherein the
systems A, A, and B are represented as qubits. Let D = Hy @I + I® Hp be the initial Hamiltonian of systems
A and B. Suppose D is a 4 x 4 matrix with distinct, positive eigenvalues:

dy = 5,dyy = 10,dy9 = 12,d; = 17 (53)
Working in the eigenbasis {|ax) |b,) }x, of D, we let the initial state of the composite system be
[V7a8) = Q00do) [a0) [bo) + cur |ar) 1) |bo) (54)

where |ago| = |a11|, and {|@)} is an arbitrary basis of A. Note that A and A are maximally entangled and B is
unentangled and pure. Selecting |v) in accordance with (25) and setting e = 0.02 yields:

V)= (1= (nm—1)€*) |ao) |bo) +€ > |a) |bp) (55)

kp7£00
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Spectrum of H,/(t) with v/ = (0.47,0.39,0.78,0.16)
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Figure 8. The generic dynamics of eigenvalues of H,/ () (top) vs. the edge case dynamics of H,(t) (bottom).

We remark that |v) has a dominant component

Voo =1 — (nm — 1)
=1—(2x2—1)x0.02* ~0.9988. (56)

For comparative analysis, we introduce another state |v') constituted by random, non-zero coefficients,
normalized to unity.

This establishes two scenarios: one where |v’) is arbitrarily selected, and a second where |v) is an edge
case adhering to theorem 4. The respective Hamiltonians for each scenario are:

Hy () =I@D+p(t)I@[v'){v']
H,(t) =12 D+ pu(t) I |v)(v] (57)

In figure 8, we present the evolution of the energy spectra as a function of the coupling parameter p(¢) for
both outlined scenarios. Upon qualitative analysis, it is observed that the eigenvalues of H,/ () ascend at
various velocities, with various energy gaps. Conversely, the eigenvalues of H,(¢) manifest a highly ordered
progression. Specifically, for any given value of y(t), a solitary eigenvalue ascends at a velocity of |vy|* &~ 1,
while other eigenvalues progress at a rate near zero. As was mentioned before, this distinct dynamical pattern
adheres to the conservation of eigenvalue velocities (all velocities add to unity). Importantly, we see that
energy gaps become narrower, yet no level-crossings are happening.

The systematic progression of eigenvalues associated with H, (¢) facilitates an intuitive characterization of
the time evolution of the state [¢),,) in (54). Let I ® U(#) denote the adiabatic evolution operator
prescribed by the Hamiltonian H, (¢). Then the final evolved state is:

[thi:a57) = oo do) U (tf) |ao) |bo)
+C¥11‘&1>U(tf) \a1>|b0> (58)

Let us consider the first term U(tf) |ag) |by) of the equation above. Applying lemma 1 and recalling theorem 5
we deduce that

U (tf) lao) [bo) = 10000 (s00T — D)~ ')

Yoo €
_ Y0 o) Be) + —— lao) b)) + O (e), 59
710000 (500 _—m |ao) [bo) p— |ao) | 1>> (€) (59)

where 7)g9 is a dynamical phase. From the bottom subplot of figure 8, we see that on the interval
T, := (5.02,+00), the lowest eigenvalue syy converges to the eigenvalue dy; = 10 of D. Indeed, by lemma 9,
the coefficient €/ (spo — do1) & 1/€ is a large number that dominates other coefficients. Hence,

U (t) lao) [bo) = 1100 |ao) [b1) - (60)
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Let us now examine the evolution of the second term U(#) |a1) |by) of the equation in (58). Consider the
interval Z, := (7.03,12.06) which can be computed using eigenvalues of D and (26) in theorem 4. Then for
py in Z,, by lemma 1, we have:

U (t) lar) |bo) = momio (s10I — D) ') (61)

Since on the interval Z,, the eigenvalue sy is not close to any of the eigenvalues and the coefficient
Vo0 = 0.9988 (56) of |ag) |by) dominates, we have:

U () |a1) |bo) = mioyio (s10] — D)™ |v)

V, €
= 110710 % lao) [bo) + Z — k) [y )
10 00 kp£00 ! kp

Y
= 7710’710$ |ao) |bo) + O (e)
s10 — doo

Therefore, we have:

U (%) lar) [bo) = mio lao) [bo) = 1o |v) (62)

Substituting the results in (60) and (62) into the final state in (58), we get:

[V5/405:) = Comoo |do) |ao) |b1) + a11mio|dr) |ao) [bo) (63)

We immediately see that |ag) can be factored out. Therefore, the system A’ is disentangled and pure, whereas
system A’ and B’ are maximally entangled. Hence, for p; € T, and the choice of |v) in (55), we achieved
maximum transfer of entanglement.

A similar analysis on the interval Z5 := (12.06, +00) which is computed according to (27) in theorem 4
shows that the entanglement between A’ and A’ is reverted back, while B’ becomes disentangled and pure. To
see this, we inspect the bottom subplot of figure 8 and note that on the interval 75, we have soo and s19 being
close to dy; = 10 and dy; = 17 respectively. Hence:

U(ty) lao) [bo) = 100 |ao) | 1),
U(ty) lar) [bo) ~ mo lar) [b1) (64)

Therefore, the final state is:

[¥3:4:5:) & 00Moo |do) |ao) |br) + arimo |di) |ar) |br) (65)

We readily see that |b;) can be factored out, and A’ and A’ are maximally entangled. That is, the original
entanglement is maximally preserved.

This example illustrates the complex yet ordered nature of adiabatic state evolution and its implications
for the entanglement characteristics of a quantum system. From knowledge of the eigenvalues of the matrix
D, one can compute specific intervals using (32) for the coupling parameter p,, where entanglement transfer
or preservation occurs.

6.2. Construction of pathological hamiltonians using edge cases

In this section, we demonstrate how edge cases can be utilized to construct a highly pathological interaction
Hamiltonian Hiy. Specifically, we will construct Hiy,, that features narrowly avoided level crossings that are
clustered within a short time interval. This structure is designed to promote a cascade of undesirable diabatic
transitions across the energy spectrum. Consequently, a system initialized in the ground state is highly likely
to evolve to the highest energy state, representing a worst-case scenario and a complete loss of adiabatic
control. Our construction begins with a 4 X 4 initial Hamiltonian D with eigenvectors {|dk) };_,. Let the
adiabatic schedule be a linear function g(t) = t where ¢ € [0, 1]. Let us construct four edge cases using
theorem 4. For, k=1,...,4 and € < 1, the edge cases are:

4

ve) = (1-36) [di) +e > |d) (66)

j=1j#k
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Eigenspectrum Dynamics of the Pathological H(t)

Eigenvalues

it =t

Figure 9. The dynamics of eigenvalues of the total Hamiltonian H(¢) comprised of edge cases. The spectrum is comprised of
extremely narrow avoided level crossings, which are tightly clustered over a short time interval. The colored lines represent
trajectories of eigenvalues of H(t), while the horizontal gray lines represent eigenvalues of the initial Hamiltonian D.

Let us now define H;,; to be comprised of all |v,) as follows:

Hip = Z i vie) (Vi (67)
=1

Here, the parameters ) denote the eigenvalues of Hj,,. One can choose \x to shape the trajectories of
eigenvalues of the total Hamiltonian H(t) := D + tH;,; without affecting the narrowness of the avoided level
crossings. The trajectories of eigenvalues of H(t) are illustrated in figure 9. There, we have chosen

A= (70,—65,—55,—50) and € = 10~ '. The figure clearly reveals a cluster of extremely narrow avoided level
crossings confined to a short time interval.

7. Application to AQC for combinatorial optimization

The framework developed in this paper, analyzing entanglement dynamics through sequential projector
activations and eigenvector swaps at avoided crossings, offers new perspectives on AQC, particularly on its
application to combinatorial optimization [4, 5].

7.1. Adiabatic evolution and problem hardness
In combinatorial optimization, the aim is to find an n-tuple, x, of binary variables, x € {0, 1}", which
minimizes a cost function f(x). We choose f to be positive with the absolute minimum set to 0.

In AQC, the problem is translated into finding the ground state of a problem Hamiltonian Hy,. The
eigenstates of H,, are the computational basis states |x) and their eigenvalues f(x) are the value of the cost
function for x.

The simplest AQC protocol adiabatically evolves the system from an easily-prepared ground state of a

suitably chosen initial Hamiltonian Hy (e.g. Hy = — ), a)(ci)) to the desired ground state of H,, using a
time-dependent Hamiltonian, with the schedule Hgimpie(s) = (1 —s)Ho + sH,,, where s = t/T runs from 0
to 1.

For our purposes, it will be more convenient to adopt the equivalent schedule obtained by rescaling the
Hamiltonian by 1/(1 — s). We then obtain H(t) = Hy + u(t)H,, where pu(t) = 1/(T/t— 1) and where ¢
runs from just above 0 to just under T. Any other schedule x(t) could be adopted in which the coupling p(¢)
increases monotonically and adiabatically from 11(0) = 0 towards infinity. For later reference, we here already
mention that, as was shown in [13], in this limit the eigenvalues, E;(1), of H(yt) obey lim,,_, o E;(1t) = E}
where the E} were identified with the interlacing eigenvalues of the Cauchy interlacing theorem.

If pu(t) grows adiabatically, the adiabatic theorem guarantees that the ground state |0(¢)) of H(¢)
adiabatically evolves towards the ground state of Hj,. We can analyze this schedule using the methods of this
paper by considering the spectral decomposition H, = > _f(x) |x)(x|. The Hamiltonian becomes
H(t) = Ho + >, pu(t)f(x) |x)(x|. As p1(2) increases, the terms 1u()f(x) |x)(x| associated with larger costs f(x)
become dominant earlier. This process implicitly implements the sequential activation of projectors
discussed in section 1.2, by ‘activating’ first the projector corresponding to the highest cost candidate
solution and then successively activating the projectors of candidate solutions of lower and lower cost.

As analyzed in [13] and discussed above, when a projector |v) (v| becomes activated, then if its prefactor,
say [, is let go to infinity, the vector |v) becomes an eigenvector of the total Hamiltonian.
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Amplitudes Evolution of a Ground State
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Figure 10. Ground state amplitudes |(i|0(¢))| in the 16-dimensional computational basisi = 0,...,15 at four time slices

(to, t1,t2,tf). As t increases, amplitudes on higher-energy states i > 0 are suppressed, and the final state becomes concentrated on
the ground state, |0000). Note that at #o the initial state is a product state—a uniform superposition of all bitstrings which can be

written as H—>®4. The final state, at t, is also a product state, which is a single bitstring representing the optimal solution.

Let us now apply this to AQC. We begin by considering the activation of any one of the projectors, say
|x)(x|. When the prefactor 11(2)f(x) of the projector |x){x| eventually becomes very large, the computational
basis state |x) gets closer and closer to being an eigenstate of the total Hamiltonian H(#). This also means that
all the other instantaneous eigenstates of H(¢) become orthogonal to the computational basis state |x).
Crucially, this means that with each of the successive activations of a projector |x)(x|, the instantaneous
ground state |0(¢)) of H(t) becomes orthogonal to that computational basis state |x).

Consequently, as (t) increases, |0(t)) becomes progressively orthogonal to the computational basis
states |x), starting with those of the highest costs f(x). In effect, the AQC process systematically rules out the
energetically highest, i.e. the worst candidate solution first, then the next worst, and so on, guiding the
system towards the true ground state |xgs) of Hp. Its eigenvalue, f(xgs), is by construction zero, and therefore
the ground state’s projector has no effect.

In figure 10, we illustrate the dynamics of the evolving ground state |0(¢)) for an example Hamiltonian
H,, where we solve minf{x) over x € {0,1}*. The plots show the evolution of the magnitude of the
amplitudes c,(t) of the ground state [0(¢)) = > " ¢.(¢) |x) of the Hamiltonian H(t) = Hy + p(t) Y, fx) [x)(x|.
Each integer y on the horizontal axis encodes a bitstring, e.g. y = 0 = |0000), y = 15 = |1111). By design, we
have f(y) < f(y + 1). Hence, the optimum solution is |0000). At t,, the ground state is a uniform
superposition of all candidate solution states, and it is a product state. As ;(¢) increases, projectors f(x) |x){x|
with successively smaller and smaller cost f(x) are activated. Each activation of a projector |x)(x| rotates the
ground state |0(¢)) to become orthogonal to |x), i.e. suppressing c,(t). Indeed, we see that already at 1, the
highest cost candidates have near-zero amplitudes. As we will discuss below, the amount of entanglement in
the ground state |0(#)) at such an intermediate time directly depends on the size of the Hamming distances
between the candidate states that are left in the ground state. By time ¢, the ground state is essentially the
product state |0000) which minimizes f(x).

7.2. Entanglement as a resource for hard problems
We can now shed new light on the relation between the hardness of, for example, a classical problem of
combinatorial optimization and the amount of entanglement that arises in the corresponding AQC.
Consider an intermediate stage of the quantum computation, where p(t) is large enough that H(¢) is in large
part dominated by projectors from H,, but not so large that the instantaneous ground state |0(¢)) is already
essentially the ground state of Hy,. At this stage, |0(#)) is primarily a superposition of low-cost computational
basis states {|Xiow) } which are candidates for the optimal solution.

The structure of the optimization problem landscape dictates the nature of this superposition:

o Rugged landscape (classically hard) implies more entanglement: If a set, L, of low-cost candidate solu-
tions are separated by large Hamming distances, they represent distinct potential solutions corresponding
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to different local minima in the classical cost function. The ground state

0(8) =D e(®)|x) (68)

x€L

is then a superposition of basis states of large Hamming distance. Such a superposition is generally less
factorizable across qubit subsystems, implying a higher degree of multipartite entanglement in |0(¢)).

e Smooth landscape (classically easier), implies less entanglement: If the low-cost candidates are clustered
together with small Hamming distances, they represent similar potential solutions. The ground state |0(¢))
is a superposition of ‘nearby’ basis states. These states share many qubit states (e.g. |000...0) and |100...0)
share all but the first qubit), allowing for greater factorizability and implying lower multipartite entangle-
ment in |0(¢)).

This leads to a crucial insight: classical hardness of a combinatorial optimization problem, in the sense of a
rugged cost landscape with low-cost states that are distant in Hamming distance, necessitates that the AQC
ground state, |0(f)), traverses states with high multipartite entanglement. The typical AQC process starts
with an unentangled ground state of Hy, develops an ‘entanglement peak’ during the intermediate stages,
and finally converges to a product state of H,,, if the global minimum is unique, or possibly into an entangled
state if the ground state of H,, is degenerate. We conclude that the magnitude of this entanglement peak
directly correlates with the classical difficulty of the problem, since large Hamming distances directly
translate into large multi-partite entanglement.

8. Non-perturbative measures of entanglement and coherent information

In this section, we focus on quantifying entanglement transfer or preservation in cases where the interaction
term |v)(v| is chosen arbitrarily. As previously discussed in section 6.1 and illustrated in the top subplot of
figure 8, an arbitrary selection of |v) results in a complex and unordered eigenspectrum dynamics in H(t). As
a result, this leads to only partial entanglement transfer or preservation. To accurately assess these effects, we
introduce a series of non-perturbative equations. These equations serve as a generalization of the previously
presented results.

Our first inquiry centers on quantifying the residual entanglement within AA following its interaction
with B during the course of adiabatic evolution, as governed by the Hamiltonian outlined in (17). Our
second inquiry focuses on quantifying the entanglement transfer from A to B, also following the course of
the adiabatic evolution. For the first inquiry, we will work with the direct channel from A to the adiabatically
evolved A’. For the second inquiry, we will work with a complementary channel from A to the adiabatically
evolved B'. We denote the direct and complementary channels as A — A’ and A — B’, respectively.

A quantum channel’s quantum capacity, i.e. its ability to transmit entanglement, is usually defined
through an optimization over the so-called coherent information [16], for parallel uses of the channel with
entangled input allowed. The coherent information for the channel A — A’, the so-called direct channel,
reads:

r=s(a)-s((4a)) (69)
The coherent information for the complementary channel A — B’, reads:
F=5(B) —s((AB)’) (70)

Here, S(-) denotes the von Neumann entropy, and its argument denotes a subsystem for which the entropy is
computed. Essentially, the coherent information compares joint and marginal von Neumann entropies and
finding it positive proves the existence of entanglement. The von Neumann entropy is entanglement
monotone if the total system is in a pure state, but its calculation requires the diagonalization of the density
operator. This is where the generalization to «-Rényi entropy proves useful. Defined for a positive real
number o # 1 as

Sa(p):= I —1a logTr (p©). (71)

The a-Rényi entropy encompasses the von Neumann entropy as a special case when « approaches 1.
Importantly, the 2-Rényi entropy S, (p) = —log Tr(p?) is directly related to the easy-to-calculate purity
Tr(p?) of a state, which does not require diagonalization of the density operator.
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Furthermore, recent work has shown that comparing purities of combined and marginal systems tends to
be significantly more effective than using von Neumann entropies for witnessing entanglement [17].
Motivated by this insight, and the ease of obtaining explicit analytical expressions for 2-Rényi entropy, we
introduce the concept of purity-based coherent information.

This alternative formulation for the direct channel A — A’ mirrors the conventional definition as given
in (69) and is expressed as:

pr ::P((AA)’) —P(A") (72)
Similarly, the purity-based coherent information for the complementary channel A — B is defined as:
P =p((4B)") ~ P(B) (73)

Just as coherent information, purity-based coherent information, when positive, indicates the presence of
quantum correlations between the subsystems. In contrast to the von Neumann entropy, which requires
diagonalization of the density matrix, purities can be computed much more easily, analytically or determined
empirically by creating interference between two identical instances of the quantum system [18, 19].

Let us briefly examine a couple of trivial scenarios to illuminate the implications of (72). Assume that
after the adiabatic interaction, (AA) is in a pure, maximally entangled state. Under this condition, the
subsystem A’ is maximally mixed. In other words, P((AA)’) = 1 and P(A’) < 1. This leads to the result that
PI* > 0, affirming the statement that (AA)’ features entanglement. In a complementary manner, if PI? > 0
and (AA)’ is found to be in a pure state, we can once again deduce that (AA)’ is indeed entangled. Generally,
whenever 1 > P((AA)’) > P(A’) it is always possible to infer that (AA)’ features entanglement [17].

It is straightforward to transform the equations above into the 2-Rényi-coherent information. First, we
take the negative logarithms of P((AA)’) and P(A’) in (72). This yields the conditional Rényi entropy
S,(A’|A"). Then, we multiply both sides of the equation by the negative one to get to the definition of
coherent information. Therefore, the 2-Rényi-coherent information for the direct channel A — A’ is defined

as follows:
RI? :=logP ((AiA) I) —logP(A")
=5,(a") -5, ((44)") (74)
Similarly, we define the 2-Rényi-coherent information for the complementary channel A — B’ as:
RIE:=logP ((AB) ') “logP(B')
—5,(B") =S, ((A )’) (75)

Given the monotonic behavior of the logarithm function, it can be readily inferred that a positive value for
RI¥ serves as a witness for quantum correlations such as entanglement in (AA)’. This leads us to establish the
following equivalence relation

P((A4)") > P(A) = $:(4) > ((A)),
or equivalently,
R >0 < PI'>0.
Similarly, we can show that
RI° >0 < PI°>0. (76)
In light of this equivalence, our subsequent analysis will focus on purities and PI¢ with PI°, which offer the

advantage of yielding more straightforward and transparent mathematical expressions. The next section
presents the analytical non-perturbative expression for computing (72) and (74).
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8.1. Coherent information of direct and complementary channels
In this section, we derive analytical expressions for the purity-based coherent information of the direct
channel A — A’ and complementary channel A — B’ after the adiabatic interaction of A and B, as governed
by the Hamiltonian outlined in (17) where the interaction term |v)(v| is arbitrary. Throughout this section,
let us assume that the system AA is initialized in a pure entangled state while system B starts as a pure and
unentangled state. Under these premises, we derive several theorems and corollaries that characterize the
evolution of entanglement from its initial value to arbitrary subsequent values.

We let the system AA start in a pure state and choose an arbitrary basis {|ax)} for the Hilbert space # ; of
the system A. For some fixed i and j, we define the state of AA to be

[thia) = uildi) |ai) + | @) |a) (77)

where a;; and «yjj are complex coefficients. We may assume that |oy;|* = |j|%, or in other words, the initial
state |15, ) starts out entangled. Then the joint initial state of AAB is:

|¥ap) = i |di) |ai) |bo) + v |;) |a;) [ bo) (78)
Since |a;) and |by) are eigenstates of the initial Hamiltonian D, by lemma 1, the adiabatically evolved state is
[4040mr) = il@) U (1) (Ias) [bo) + s |5) U (1) (|a;) [bo)) (79)
= im0 |i) [sio) + cimjo |a;) |50 (80)
where 7 and 7);, are dynamical phases. We show that the purity-based coherent information of the direct

channel A — A’ can be computed as follows.

Theorem 10. Consider a tripartite quantum system AAB initially prepared in a state described by (78). Assume
that the system undergoes adiabatic evolution according to the Hamiltonian H(t), as defined by (17) with |v)(v|
being arbitrary. Then the purity-based coherent information for the direct channel A — A’ is given by

PIY = T [Try [ so)(spl) T [Js0)sol]] — T [Txa )l T [Js0)(50]) ] @)

where v = 2|av;i|*| o] .

Similarly, the purity-based coherent information of the complementary channel A — B’ is given by the
following theorem.

Theorem 11. Under the assumptions stated in theorem 10, the purity-based coherent information for the
complementary channel A — B’ is given by

PI = T [T [|s0)(s0]) Tra [Jso) s}
—vTr [TI’A [|5i0><5i0|] TI'A HS]'()><S]'0H] 5 (82)
where v = 2|aii|2|ajj|2‘

We conclude this section by presenting two important lemmas that are used to derive explicit formulas
for the aforementioned coherent information measures in theorems 10 and 11. Given the relation in lemma
1, we have:

[s) =~ (sT=D)""|v) (83)

Then, we can explicitly compute the purity of the reduced density matrix of |s)(s|.

Lemma 12. Let pap := |s)(s| and pa := Trp[pap), then the purity of pa is given by

vij Vij Vi v
P(pa) =7 : ! ; AT (84)
T ) ) ) G )
where vij = (v|a;, bj) is a coefficient matrix of |v) in the eigenbasis {|a;) |bj) };; of D and
—1/2
= —|S— di]’

Y
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We have presented a non-perturbative, explicit formula for calculating the purity of a reduced density
matrix corresponding to the eigenstates of the final Hamiltonian H(t). Below, we introduce a lemma, which
is a generalization of lemma 12. This lemma is instrumental in deriving explicit equations in
theorems 10 and 11.

Lemma 13. Let|s), |s'), |s'') and |s"'') be eigenstates defined as in (83). Then the following holds:

*

Vij Vij Vi V]
e Teg (906 Tea (56| = 4/ S~ e Y
A 2 (o) i) 7 dog) 77— )

(86)

Therefore, whenever s =s’,s”’ s"’’, the equation in (86) becomes P(p,) in (84). Now, using lemmas 12

or 13 it is straightforward to derive explicit equations for computing the quantities Tr[Trz(|sio )(sj0|]] and
Tr[Trg[|sio){sio|]] that appear in theorems 10 and 11. This, in turn, yields explicit non-perturbative equations
for purity-based coherent information PI? and PI.

8.2. Maximum and minimum of coherent information
In this section, we show that the construction of the edge case |v) in theorem 4 that accomplishes
entanglement transfer or preservation is just a special case of theorems 10 and 11 that maximizes/minimizes
PI¥ and P

We commence by examining the initial quantum state specified by equation (78), with the coefficients «;
and jj each set to 1/ /2. A straightforward analysis reveals that initially (at ;= 0), the coherent information
of the direct quantum channel from A to itself stands at the maximum PI¢ . = 1/2. Concurrently, the initial
coherent information associated with the complementary channel from A to B is at its minimum
PI{,, = —1/2. Given that PI¢  is positive, it is inferred that the system AA is entangled, a fact that is directly
observable from the initial state configuration. The derivation that PI?. = 1/2 is achieved through the
application of theorem 10, under the assumption that the system has not undergone evolution, resulting in

|sio) = |a;) |bo) and |s;o) = |a;) |bo). Therefore, the calculation proceeds as follows:
PE. = vTr [Trp [|ai) |bo) {aj| (bo|] Trp [|a;) |bo) (ai] (bol] ]

—vTr [TrB [lai) |bo) {ai| (bo|] Trp [|a]-> |bo) <aj’ <b0|]]
= VTt [|ag)(a;| |a;)ai|] — vTr [|ai)ail |a;)(aj]

= vTr|a;)(ail]
_ 212
= 2| ai]*| aj]
2 1
42
The subsequent application of theorem 11 (where we trace over A) yields PI{,, = —1/2.

We now introduce an interaction term p(t) |v)(v| to adiabatically evolve the initial state, where |v) is
constructed as specified in theorem 4, and 1(ty) is selected based on the interval defined in equation (26).
Specifically, the dominant component of [v), vjg, is set to 1 — (nm — 1)€?, and yu(ty) is chosen from the
interval ((djo — dip)/[vio|*, (dj1 — dio) /|vio|*)-

By employing theorems 5 and 11, we demonstrate that the coherent information of the complementary
channel from A to B’, denoted as PIf,_, tends to its maximum value 1/2 as € tends to zero. This signifies that
the entanglement initially present between A and A has been almost completely transferred to B over the
course of adiabatic evolution. The calculation for the coherent information of the complementary channel
from A to B’ is as follows:

PI§ . = vTr [Try [[sio)(sio| ] Tra [[sio )(sio|] ] — v/Tr [Tra [[sio)(siol] Tra [|sio )(si|] ] (87)
Due to the construction of |v) and the choice of y(t), by theorem 5 we know that as € — 0, we have:

Isio) = U (%) lai) [bo) — |a) |b1),
|sio) = U (t) |aj) |bo) — ai) [bo)

Therefore, in the limit of € — 0, we get:
Pl = VT [Trallai) b1) Gai| (bol Trallas) [bo) {ai] (b |
— UTe[Trallag) [br) (@i (61 []Trallas) bo) (ail boll]
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= vTr[[b1)(bol |bo)(b1[] — vTr[[b1)(b1 ]| bo)(bol]
= vTr[|by)(b: ]

= 2|evil*|a?

Correspondingly, it can be shown that in the limit € — 0, we get PI¢ —1/2.

inal —

Hence, we establish that the value of coherent information of the complementary channel PIf_, at the
end of the adiabatic evolution matches the initial maximum value of coherent information of the direct
channel PI{ ;, of the system prior to evolution, confirming the nearly complete transfer of entanglement from

A to B during the process.

9. Conclusions and outlook

Adiabatic dynamics of entanglement in large n multi-partite systems. We decomposed adiabatic evolutions
into a sequence of projector activations, and for each of these activations, we traced the changes of
entanglement to eigenstate swaps that occur at avoided level crossings. We found that the speed and
efficiency of the underlying swaps of eigenstates depend on how narrowly the level crossings are avoided, and
this can be traced back to how closely the projector |v)(v| that is currently being activated is aligned to any
prior eigenvector, |dy).

It is worth noting that all of our main theorems and results are independent of the specific choice of
adiabatic schedule and remain valid for general adiabatic computation or its discretized digital versions; i.e.
gate-based quantum circuits. The sequential introduction of rank-one projectors serves not as a
computational method but as an analytically tractable tool that isolates the fundamental mechanisms
between entanglement behavior and the spectral structure of a Hamiltonian.

While we showed this here explicitly for bi-partite and tri-partite systems, it is straightforward to extend
this analysis to the dynamics of the more complex entanglement that can arise in n-partite systems for n > 3,
for example, in n-qubit AQC.

Entanglement dynamics, gaps, and quantum advantage.

An interesting direction for future investigation concerns the relationship between the energy landscape
structure—specifically the presence of Hamming-distant local minima—and the entanglement properties of
the instantaneous ground state during adiabatic evolution. As we discussed above, the existence of such
distant minima implies that, at some intermediate stage, after the high cost computational basis states have
been eliminated from the ground state, the ground state |0(#)) must be a coherent superposition of regions of
low-cost configurations that differ on a large number of qubits. Such a cat-like state is fragile, see [20] and,
crucially, it cannot be factorized across any bipartition that splits the differing bits, implying the presence of
large amounts of genuine multipartite entanglement.

It will be very interesting to explore this connection further, particularly in relation to the nature of a
potential quantum phase transition [4, 5, 21-23] that the system may undergo during the adiabatic
evolution, in the thermodynamic limit, as the regions of energy below a threshold that exist around local
minima may link up or separate, analogously to Anderson localization. On Anderson localization, see, e.g.
[24]. In particular, the entanglement structure necessitated by the cost landscape might serve as a diagnostic
for distinguishing first-order transitions that would come with exponentially small gaps and abrupt changes
in ground state structure from second-order transitions, where the gap could close polynomially, potentially
making the AQC more efficient. A more detailed understanding of how the cost function landscape and
corresponding entanglement build-up correlates with gap behavior and transition order could offer valuable
insights into the design of more efficient adiabatic algorithms.

New tools. In the context of this set of questions, the tools and insights that we developed in this paper can
be useful since they describe the elementary mechanism behind the adiabatic dynamics of entanglement: the
effectively successive activation of the projectors that make up the problem Hamiltonian, H,, leading to the
swaps of eigenvectors at the avoided level crossings that change the entanglement structure.

In particular, we found in section 6, that the efficiency of these entanglement-changing processes is
intrinsically linked to the size of their corresponding energy gaps. Specifically, edge cases, where the activated
projector |v) is nearly aligned with a prior eigenstate, lead to the most efficient entanglement changes. But
edge cases imply narrowly avoided crossings (theorem 8) and narrow gaps g, necessitate a longer evolution
time T o< 1/g2,;, (or potentially 1/g> . , see [3, 5]) to maintain adiabaticity. Conversely, less narrow gaps can

be traversed faster, but they generate less entanglement dynamics.
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Therefore, at every avoided level crossing of the ground state, the link between the efficiency of
entanglement redistribution and the size of the gap involves a nontrivial tradeoff: narrower gaps enable more
effective redistribution of entanglement but necessitate slower evolution to preserve adiabaticity.

This trade-off needs to be understood to establish criteria for a quantum advantage. To this end, it will be
useful to investigate further the non-edge cases. For this purpose, it will be very interesting to focus on the
Cauchy interlaced values and their states. This is because, as discussed above, we can already infer from [13]
that for all projector activations, edge case or not, the energy eigenvalues converge towards the interlaced
eigenvalues of the Cauchy interlacing theorem. This means that for all projector activations, the
instantaneous ground state |E; (1)) converges toward the state |E7). The edge cases are the special cases
where |E;(0)) ~ |ET).

Beyond the analysis of eigenvector swaps (section 5 and appendix A), and the relationship between
entanglement transfer and gaps (section 6), also the combinatorial observations and the quantitative
measures of coherent information (section 8) that we analyzed here, help provide a non-perturbative
framework to investigate this intricate relationship between classical problem structure, quantum resource
utilization (entanglement), and the potential for quantum advantage in AQC.

Further, also in quantum annealing, which has already found industrial applications [25-29], it should
be very interesting to use the present results to similarly explore the relationship between computational
complexity, in the sense of the maximum speed of the computation, and the usage of the resource of
entanglement.

Non-AQC and Landau-Zener. More generally, the role of entanglement in adiabatic and adiabatic-inspired
algorithms is an active area of research [7, 9, 30-35] for which our results provide new tools. For example,
the group theoretic approach in appendix A could enable qualitative tracking of entanglement, also possibly
using graphical strategies, [36, 37], without the need for full numerical simulations.

In particular, it will be interesting to explore how the relationship between computational speed and the
usage of the resource of entanglement that we found here generalizes to adiabatic-inspired and diabatic
quantum computing algorithms such as QAOA [7] and adiabatic/diabatic quantum algorithms, see, e.g. [9,
38], as well as to counter-diabatic algorithms, see, e.g. [39, 40]. To this end, it will be straightforward, for
example, to generalize our present results by strategically permitting diabatic state transitions, namely by
using the Landau—Zener transition probabilities to allow controlled non-adiabaticity at chosen avoided level
crossings.

Quantitative tracking of entanglement with coherent information. Independently of AQC, in order to
quantitatively track the creation and transfer of entanglement during any adiabatic interactions, we
calculated coherent informations based on the 2-Renyi entropy. This allowed us to use our nonpertubative
approach to track the dynamics of entanglement during the full duration of even strong interactions. For
prior results on the perturbative tracking of the dynamics of entropies and entanglement during interactions,
see [20, 41, 42]. It will be interesting to apply our nonperturbative methods to the 1-Renyi entropy-based
coherent information since this will provide lower bounds for the quantum channel capacities of the direct
and complementary channels.

Quantum error correction. In quantum processors, an important source of quantum errors is the
inadvertent creation or transfer of entanglement due to unintended interactions among qubits or among
qubits and their environment. Quantum error correction aims to protect quantum information through
encoding and decoding techniques. Numerous studies, including those in AQC, have focused on this goal
[43-47].

In this context, the theory presented in this work demonstrates, for example, that if a qubit A is entangled
with an ancilla A, it is possible to surgically disentangle A from A by having a qubit B interact with A using
for example a tailored edge-case-like Hamiltonian. Equally, it is possible to choose the interaction between A
and B such that the entanglement with A becomes distributed between A and B, see e.g. the tri-partite
entangled state (5). This ability to surgically entangle, disentangle and transfer entanglement, Hilbert space
dimension by Hilbert space dimension, i.e. on the most elementary level, will be useful for quantum error
prevention and correction in adiabatic, adiabatic-inspired and algorithmic quantum computation, see, e.g.
[43—47]. To this end, it should be very interesting to explore training machine learning models to use these
surgical tools for quantum error prevention and correction adapted to the hardware at hand. For examples of
machine learning applied to quantum computation (including adiabatic computation) and error correction,
see e.g. [48-56].
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New entanglement measures. Based on our finding that the dynamics of entanglement can be traced to
eigenstate swaps at avoided level crossings, the development of new measures of multi-partite entanglement
may be possible. For example, it will be interesting to explore measures based on the minimum number of
projector activations, avoided level crossings and associated state swaps that are needed to create a given
entangled state from an unentangled state. Such measures are nontrivial since, for example, for a projector
activation to arrive at a desired critical 1 value, it may first have to pass through other critical i values that
could impart collateral damage to the effort of generating the entangled target state. Similar to Rubik’s cube,
a group theoretic analysis could be developed here, along with mnemonic devices. Inspired by the categorical
approach to knot invariants [57-59], it may also be possible to use category-theoretic methods to develop
entanglement measures or entanglement invariants (i.e. functors) based on our findings. To this end, the
over and under crossings in knots would be replaced by the different but reminiscent structure of eigenvector
swaps at avoided level crossings. While the Reidemeister moves of knots lead to the quantum Yang Baxter
equation whose solutions can be used to generate knot invariant polynomials, as is well known, see, e.g. [59],
here it will be very interesting to pursue an analog approach by exploring possible analogs of Reidemeister
moves for avoided level crossings.
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Appendix A. Group theoretic view of the special construction of |v)

In the previous section, we showed that the evolution with the edge case |v) constructed as in theorem 7
results in two eigenvalues swapping their eigenvectors. It is possible to represent this swapping as a
transposition of two elements in a set comprised of eigenvectors of H(t). A transposition in a set of elements
is a permutation that exchanges two elements and keeps all the rest unchanged.

It is well known that the permutation group Sy on N elements can be generated by composing
transpositions. This means that using multiple interaction terms, which are constructed according to
theorem 7, we can obtain any permutation of eigenvectors of the Hamiltonian H(¢). By this, we mean that
upon addition of the specially constructed interaction terms (/) (£)|v{)) (¥(7)| to the initial Hamiltonian D,
the eigenvalues of H(t) =D+ 3}, p D (£)|vD) (v(7)| will have the eigenvectors of the initial Hamiltonian D
but permuted. To see this remarkable relation, consider the Hamiltonian

H(t) = D+ p(0) [v)(v], (A1)
where 14(0) = 0. Let
My :={|do),|d),....]dk} -, |dn-1)} (A2)
denote an ordered set of eigenvectors of H(0) = D with the corresponding eigenvalues ordered as
dy<dy <---<dp<---<dn_1. (A3)

We now construct |v) in accordance with theorem 7. Specifically, we set the kth component of |v) to be
dominant, vx = 1 — (N — 1)€* where € < 1. The rest of the components are set to . Let #; denote the final
time. Set f4(tr) = puxs1 + Ap where fix4 is the critical pi-value defined as

dyp1 —dk
ksl = W7 (A4)

and 0 < Ap < fgga-
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By theorem 7, in the limit € — 0, the final Hamiltonian H(#) will have the following ordered set of
eigenvectors

Mtf = {|d0> ) |d1> IR |dk+1> ) ‘dk> ey |dN71>} ) (AS)
with the corresponding eigenvalues
So < sp < e S < S <o <SN-—1- (A6)

We note that the final Hamiltonian H(t) has the same eigenvectors as the initial Hamiltonian H(0) = D, but
the kth and k + 1 eigenvalues have traded eigenvectors, i.e. the eigenvalues s; < s;41 have the associated
eigenvectors |dy41) and |dy), respectively. We have illustrated this behavior in figure 5.

In the construction above, we have shown that choosing the kth component of |v) to be dominant and
choosing the critical point g1 accomplishes the transposition of eigenvectors |di) and |di ;). Using the
group theoretic cycle notation, we let (k,k + 1) denote a transposition of elements k and k + 1, and * denote
the action of transposition on a set of elements. For example, (3,4) % {1,2,3,4} = {1,2,4,3} signifies that 3
is mapped to 4, and 4 is mapped to 3. Therefore, the choice of the dominant component vy and the critical
point pix11 can be succinctly represented as a transposition (k, k 4+ 1) which acts on a set of eigenvectors M.
Hence, we can write

(k,k+1) % My = M. (A7)

It is now trivial to see how adding multiple rank-one projectors affects the eigenstates of H(¢). Let
DW := H(t;) and add another interaction term ) (£)|v(®) (v(?)| such that ) (£) = 0 for ¢ < ;. Then, the
updated Hamiltonian is

H(t) = DY + @ (1) |p2)) (v, (A8)

such that
H(t)=DW fort =t (A9)
H(f) =D + 5@ (1) y@) (1) for iy < £ < 17 (A10)

We, construct [v(?)) with a dominant component Vj(z), choose the critical point u](i)l and let ,u(tj((z)) = j(i)l-i-

Ap®), Using the cyclic notation for transposition, we can easily obtain the set M . of eigenvectors of
¥

H (tf(z)). To this end, perform the following computation:
(jaj+l) (k7k+l)*M0:(j7j+1)*Mtf:Mt;2> (All)

That is, we first swap elements k and k + 1, and then we swap elements j,j+ 1.

This abstraction allows us to deduce several interesting properties about the addition of specially
constructed rank-one projectors. For example, if 11(2) (£)|v®)) (v(?)| is introduced before 11(t) |v)(v|, how does
the ordering of eigenstates change? We can easily answer this question by recalling that the transpositions
(j,j+1) and (k,k+ 1) commute if j # k. Therefore, the ordering of eigenvectors of the final Hamiltonian
H (tf(z)) is the same regardless of which interaction term is introduced first as long as j # k.

Recalling that transpositions generate the permutation group Sy, we can deduce that adding multiple
specially constructed rank-one projectors is equivalent to composing transpositions, and by composing
transpositions, we can achieve any permutation. Therefore, it is possible to induce any ordering of eigenstates
of the final Hamiltonian.

We would like to point out that transpositions are not the only types of permutation that can be
achieved. It is also possible to choose the critical point p such that the associated permutation is a shift. To
see this, choose the dominant component to be v for k < N — 1. Then choose the critical point py_; and set
p(ty) = pn—1 + Ap. Then, the associated permutation is a shift to the right of all elements that are greater or
equal to k. This shift in cycle notation is (k,k+ 1,k+2,...,N — 1). The rest of the elements remain
unchanged.

Since the set of permutations Sy forms a group, it contains a neutral element, and each element in Sy has
an inverse. We can identify the neutral element of Sy with the interaction term p(¢) |v)(v| where |v) is simply
an eigenvector of D. Adding such an interaction term will keep the order of eigenvectors unchanged. To find
the inverse of a permutation, it is sufficient to identify inverses of transpositions (k,k + 1). In other words, we
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want to find () (£)|v?)) (v(?)|, which reverses the action of () |v)(v| associated with the transposition

(k,k+ 1). To achieve this, we work in the eigenbasis of D) = D + p(ty) [v)(v|. Next, we choose a critical
point u,(jgl, set u(t}z)) = :“1(5521 + Ap?), and choose the dominant component |v) to be v¢. This can be again
written as (k,k + 1)), where the superscript indicates that transposition acts on eigenvectors of

DW =D+ pu() [v)(v]-

Having generalized the behavior of eigenstates of the Hamiltonian under the addition of specially
constructed rank-one projects, we can revisit theorem 4 and view it from the perspective of permutations.
We again consider the tripartite system AAB, where AA are entangled, and B is in a pure, unentangled state.
For some fixed indices i < j, suppose eigenvalues of D are ordered as

dig < djy <+ <diy <+ <dj < dj, (A12)
and suppose that the combined system is initialized in the following state:
[Wiap) = iildi) |a;) [bo) + i |a;) |aj) |bo) (A13)

We construct |v) according to theorem 4, namely, we let v;y to be the dominant component, and we choose
the critical point pjo = (djp — di¢)/|vie|* and set u(ty) = pjo + Apr. Then the initial state in (A13) will
adiabatically evolve into

[50arp0) = mircvii ) |ai) |bo) + mjicii ;) |ai) |be)
= |a;) ® (miicviiai) |bo) + e ) [be)) (Al4)
In the above 7);;,7);; are dynamical phases. Importantly, |a;) can be factored out. Therefore, A is now
unentangled and pure, whereas A and B are entangled. Essentially, we performed a shift and a swap in the
eigenvectors of H(t). Specifically, the eigenvalue sy of H(#) now has eigenvector |a;) |by), whereas the
eigenvalue si; has a acquired the eigenvector of the neighboring larger eigenvalue d; ¢ ,. Having assigned

(permuted) the eigenvectors of H(#) to different eigenvalues, we made sure that the initial state in (A13)
adiabatically evolves into (A14).

Appendix B. Proof of lemma 1

Each activation of a projector is described by a time-dependent Hamiltonian of the form:
H(t):=D+ p (1) |[v)(v| (B1)

Lemma 1. Let H(t) in (B1) be the Hamiltonian of a quantum system with a non-degenerate spectrum. Let |v) be
an arbitrary generic vector and dy. be the eigenvalues of D. For any eigenvalue s := s(j1(t)) # di of H(1), the
corresponding eigenstate |s) is given by

|s) =~ (sI—D)""|»), (B2)
where 7y is a normalization constant defined as

1

e ——" —— (B3)
I(sT=D) ™" )

’7:

Our goal is to derive an explicit expression for the eigenstate |s) of H(¢). Let s := s(u(t)) and p := pu(%).
We want to consider the following eigenvector equation:

H(1)|s) =sls) (B4)
(D+pv)v])|s) = sls) (B5)
Rearranging terms, we get:
(sI=D)ls) = ulv) {vls) (B6)
|s) = p{vls) (sT= D)™ |v) (B7)

Finally, we set v = 1/||(sI — D) ™! |) || and redefine |s) as

|s) ;== (sI—D)"" ). (B8)
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Appendix C. Proof of lemma 3

Explicit expression for 4 as a function of the eigenvalue s of H(¢) for all real s. Concretely, working in the
eigenbasis {|di) };—, of the initial Hamiltonian D, we have:

SIZAN
nls) = (ZS_"dk> (C1)

k=0

Lemma 3. Let s be an arbitrary real number. Consider the Hamiltonian defined by H(s) = D+ u(s) |v)(v|,
where u(s) is as in (C1) and |v) is arbitrary. Then, s is an eigenvalue of H(s).

Consider an N x N Hermitian matrix H(s) = D+ p(s) |v){(v|, where p(s) is a scalar function to be
determined. Let {di} and {|di)} be the eigenvalues and eigenvectors of D. Define v, = {di|v). For a real
number s, the characteristic polynomial p(s) of H(s) can be expressed as:

p(s) =det(H(s) —sI)
= det(D+ p (s) |v){v| — sI) (C2)

Using Cauchy’s formula for the determinant of a rank-one perturbation [60, section 0.8], we have:

) (C3)

N—1 w2 -1
is) = (Z Skdk> (€
k=0

This choice of 11(s) ensures that the factor within the parentheses in the determinant expression (C3)
becomes zero, leading to p(s) = 0. Therefore, s is an eigenvalue of H(s).

p(s) =det(D—sl) (1 —,u(s)i Y(Zk

S
k=0

Define p(s) as:

Appendix D. Proof of theorem 4

Theorem 4. Let n = dimA and m = dim B. For some fixed indices i < j, suppose the eigenvalues of D are
ordered as

d,‘o<d,‘1<"'<djo<dj1. (D1)
Let system AA be entangled and B be in a pure, unentangled state:
|9 a5) = citldi) |ai) |bo) + | ;) |a;) [bo) (D2)

Fix an index { > 0 such that dig < diy < djo. For € > 0, if |v) is such that

1—(nm—1)e* fork=ip==F, (D3)
V, =
k4 otherwise,
and
djp —diy dj —dig
. D4
/”'tf € < |Vi£‘2 ) |ViE|2 ( )

Then, as € — 0, the entanglement of the evolved system is such that A becomes entangled with B, and A becomes
pure and unentangled. Furthermore, if

djy — dig
el

,ul}’ > ’ (DS)

then as € — 0, the entanglement of the evolved system is such that A becomes again entangled with A, and B
becomes again pure and unentangled.
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The proof is the direct application of theorem 5 or 6. Let the system AA be entangled and B be in a pure
and unentangled state:

W) = i i) |ai) [bo) + ;) [aj) [bo) (Do)

For € >0 and fixed index i, define |v) in the eigenbasis {|ac) |b, ) }xp of H4 and Hy such that

(D7)

{1—(nm—1)62 fork=i,p=0,
Vkpz

otherwise.

dip—di dji—di
[viol> 7 [viol?

Suppose that s is in the interval ( ) Then, by theorem 5, at the limit € — 0, the state

|a;) |by) evolves into the next higher-energy state |a;) |1 ), while the state |a]~> |bo) evolves into |a;) |bo). Hence,
the final state is:

54050} = mircvii |ds) |ai) |br) + mei |a;) |ai) |bo)
= |a;) ® (Uiiotii |ai) [b1) + mjjcy; |&j> ‘b0>) (D8)

In the above, 7;; and 7;; are dynamical phases that were acquired during the evolution. Importantly, we
immediately see that |a;) can be factored out, which implies that system A is now untangled and pure,
whereas A and B are entangled.

Suppose that p;, > %. Then, by theorem 5, at € — 0, the states |a;) |by) and |a;) |bo) evolve to their
next respective higher-energy states: |a;) |b;) and |aj> |b1). Hence, the final state of the total system is:

| iam) = miscid i) |ai) [br) + njai|a;) |ag) [br) (D9)

In the above, 7,7 are dynamical phases acquired during the evolution. Furthermore, the state |b;) can be

factored out. We deduce that the system B is now pure and unentangled, whereas A and A are entangled as in
the initial state. As such, the entanglement structure is preserved.

Appendix E. Proof of lemma 9

Lemma9. Let |v) be constructed as in (D3) and suppose that for k > i, we have

diyq — d;
p(r) > =4 (E1)
|vil
Then, there exists C; > 0 such that
div1 — sk (p(t) < Cé. (E2)
Consequently,
€ 1
_— > (E3)
dir1 —se(n(t) ~ Cie
Furthermore, if
di — d;
0< p(t) < F—-, (E4)
|vil
then there exists C > 0 such that
S —di < Czez. (E5)

We first prove the lemma 9 and use it to prove theorem 5. Let N be the dimension of the Hilbert space
H(#) acts on. Let {|dj>}11-\];01 be the eigenbasis of D with eigenvalues dy < --- < dy_,. Consider the
characteristic polynomial of H(¢) in the eigenbasis D and p > 0:

p(s) =det(D+ p|v){v| —sI) (E6)
S

=det(D—sI) 1+uzd’ (E7)
=0 477
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N— 1 N—1
—5) (E8)
]:0 j=0
Fix index i and construct |v) according to (F1) in theorem 5. Then,
1-(N—1)e® forj=i,
y= 1N orj = (E9)
€ otherwise.

Without loss of generality, assume that i =0, then vo = 1 — (N — 1)¢* and v; = € for j > 0. The characteristic
polynomial becomes:

N—1 N—
P(S):jl:[()(dj_5> 1+ud Z:: (E10)

For any index p, due to the interlacing inequality, there exists eigenvalue s of H(¢) such that d, <s < d,y,.
Without loss of generality and for simplicity, we consider p =0. Then, dy <'s < d, for > 0. Hence, we have:

N—1 ‘V |2 N—1 1
- d—s) 11 0 2 =0 Ell
p (=L d—s) [ 1+ng = +me D (E1L)
j=0 j=1
Assuming 11 > 0, we get dy < s < d;. Therefore, we must have
| 0‘2 N—1 1
1+“d— + e Zﬁzo. (E12)
j=1"7
Rewrite the above as
N—
[vol®
Y G Lt e Z (E13)

Since dy < s <d; <--- <dy_1, we have d; — s > d; — d, for j > 2. It follows that

N-1 N-1T
< . E14
Z di—s Z d;— d1 ( )
]:2 7 ]:2 )
Define Z := Z 7—a and note that it is independent of s and hence independent of y. Thus,
2
1
1+pu vl + pé + ueZ > 0. (E15)
do —S dl —S
Rearranging yields:
1 |V0‘2
2 2
> —— zZ El6
¢ dl —S + s— d() - ( )

Since dy < s < dy, we have s — dy < dy — dy. Therefore, |vo|>/(s — do) > |vo|?/(dy — dy). Using this, we get

1 1 wl?
? —— -z E17
¢ d1 —S - 12 d1 — d() ¢ ( )
Rearranging terms yields:
e +e(dy—s)Z> (d —>s) —l—i— [0l (E18)
1 1 v d—dy
Since d, — s < d; — dy, we can write:
&+ (dy—dy)Z> (dy —5s) ! —+ ol (E19)
1= do 1 u a4
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The above can be rewritten as:

> dl —S (EZO)

Note that the denominator can be re-expressed as:

1 2 2 _
1wl e tdo—dy (E21)
o dr—do (dy —do) pt
Hence, (E20) can be written as:
e (1+(d —do) Z) (dy — do)
>d — E22
|V0|2,u+d0 *dl ! s ( )
Since pu > (dy — dy)/|vo|?, we have |vo|> 1w + do — dy > 0. Finally, we note that |vy|* < 1, therefore
[vo[* 1 < p < 2. Thus, we have:
21+ (dy —dy) 2) (dy — dp) 2
Cl+(d—d)Z)(d—d)2p (E23)

/L+d0—d1

We can eliminate the dependence on p by letting p1 — +oc0. In the limit © — +00, we get a tighter bound:
E(1+(di —do)Z) (dy —dp)2 > dy —s (E24)

Using similar arguments as above, it is straightforward to show that for 0 < u < d; — dy < (dy — dp) /| |*
and d; < s < d,, we have

62[,6 (dl — d())

>s—d,. E25
4~ —do 1 (E25)

We note that the bound can be saturated for ;1 = 0. In this case, we have H(t) = D, which means s = d;. This
proves lemma 9.

Appendix E. Proof of theorem 5
Theorem 5. Let N be the dimension of the Hilbert space that H(t) acts on and {dj}fr;(f be the increasing

sequence of the eigenvalues of D.
Fix index i and let € > 0. Suppose |v) is a vector characterized by its components v; = <v|dj> as follows:

VNN S
T
For k>1, if s lies within the interval
(oo,dk_di), (F2)
[vil?
then the eigenstate |di.) of D adiabatically evolves as
Uy, |di) — |dx) ase — 0. (F3)
If pu, lies within the interval
(%) "
then
Uy |di) — |di) ase — 0. (F5)
If pu, lies within the interval
(W, +oo> , (F6)
[vil?
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then
Uy |di) = |diy1) ase — 0. (F7)
We now prove theorem 5. By lemmas 1 and 2, we have
U(t) |di) = (sI—D) ™" |), (F8)

where eigenvalue dy < s < dj,. For 0 < u < (dy — d;)/|vi|?, by lemma 9, we get that there exists C, > 0 such
that

s—dp < Gyl (F9)

Furthermore, we have:

€ € 1
> = — F10
s—dip T Ce: Ce (F10)

It follows that the component (s|d) of |s) tends to dominate all other components:

Vi

—lase—0 (F11)
S—dk

(sldi) = =7

€
S— dk
We remark that the normalization constant y prevents the equation above blow up by trending toward zero
together with e. Therefore, |s) — |di) as € — 0. This proves (F3).

Now, suppose that (dy,; —d;)/|vi|*> < p and as before dy < s < diy1. Then by lemma 9, there exists C,
such that:

dk+1 —s< C1€2 (F12)
It follows that

1
Bl € (F13)

sldka1) =7y = < —=y—.
< ‘ * > S-dk_;,.l S-dk_;,.l C1€
Hence, the component (s|dy1) of |s) approaches —1 as € tends to zero. Also, as € tends to zero, so does .
This proves (F7).

For a fixed € (dk_di i1 —d;

il > [vl?

), we have dy < s < djy1. Therefore, the component

v 1=(N-1)é
Gl = =74 (F14)

must converge to 1 as € tends to zero and +y tends to s — d;. This proves (F5).
Appendix G. Proof of theorem 6

Theorem 6 (alternative). Let {dj}fgol be an increasing sequence of eigenvalues of D.
Fix index i and let € € (0,1). Suppose |v) is a vector characterized by its components v; = (v|d;) as follows:

. 1—-(N=-1)e ifj=i G
! € otherwise
For each k > i, define pix41 as:
diy1 — d;
Hig1 2= kﬁ"z (G2)

Let U(t) be the adiabatic evolution operator of H(t). Then, in the limit as e — 0, the following transitions occur:

U(t (1 — Ap)) [di) — |di) (G3)
U(t (kg + Ap)) [1) dic = |die1) (G4)
U(t(ptrr — Ap)) i) = ldkgr) (G5)
U(t (it + Ap)) [dieg1) = |di) - (G6)
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In the above, Ay is chosen such that
0 < Ap < min{pgyy — fy1, 1 — i) (G7)

where i < g1 < flgga-

Theorem 6 is a restatement of theorem 5 with a focus on the critical points jix1 1 := (dgy1 — di)/|vi]?
instead of the intervals given in theorem 5. We only note that 1(t) is a monotonous function of time and
hence is invertible. Therefore, for () = px11 = Ap, we can solve for ¢ to get the critical time point
#(ptk+1 = Ap) around which the eigenstate transitions are happening.

Appendix H. Proof of theorem 7
Theorem 7 (Eigenstates Swap). Let dyy1 be an eigenvalue of D. Suppose that |v) is constructed as in (G1). Let

ti1 and Ap > 0 be the critical point and increment of 41 as described in (G2) and (G7), respectively. Then,
in the limit € — 0, we have the following relation:

[k (i1 — Ap)) = |v) and [sii1 (s — Ap)) = dit1)
[k (1 + Ap)) = |di1) and [siqr (prgr + Ap)) =[v)

Here, for the adiabatic evolution operator U(t()) of H(t), we have:
Isk (1)) = U ((w)) |di) (H1)
This theorem is a succinct restatement of theorems 5 and 6.
Appendix 1. Proof of theorem 8

Theorem 8. Let |v) be constructed as in (D3). For index k, let si(11(t)) < s1(1(t)) be any two consecutive
eigenvalues of H(t). Then, there exists Cy > 0 such that to second order in €, we have:

ser1 (1 (1) — s (u(t)) = Coe* forallt >0 (I1)

For an index k, define s; := s (). Recall that for p1 > 0, s < diy1 < sgo1. We will show that for the
construction of |v) as in theorem 5 there exists Cy > 0 such that

diy1 — sk > Coe?, (I2)
Skl — drg1 = 0. (I3)

Therefore, diy1 — Sk + sip1 — dir1 = Skp1 — Sk > Coe?.
For the case y < 0, we will simply have a vertically mirrored behaviour. That is

sk—1 < dr—1 < sp < dg, (14)

and it will follow that
—di_1 > C0€2, (15)
di_1—sg_1 > 0. (I6)

Hence, sp — sp_; > Coe?.

Since the case p < 0 is the mirrored version of the case p > 0, we prove the case for the positive p for
which sp < dig1 < Spa1-

Without loss of generality, fix i =0, then vy = 1 — (N — 1)e* and v; = € for j > 0. Also, for notation
clarity, fix k = 0. Then we show s; — sy > Coe?.

Consider a characteristic polynomial H(t) = D + p|v){v| given by:

N—-1

p(s)= I (d-9) 1+ud _Z

j=0

17)
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Due to the construction of |v) and u > 0, the eigenvalue sy of H(#) is such that dy < sy < d;. Hence,
p(so) = 0. Since, the case i = 0 is trivial, we consider x> 0. Then it follows that:

- + pe’ d1 +u€2zd750 (18)

We want to show that there exists Cy > 0, such that d; — sy > Cpe?. To this end, rearrange (18) as follows:

N—1

2 1 2 1
€ - _ ‘V0| —62 - (19)
dy — 5o po do—so i— dj — so
Then,
€ 1wl 1wl
d]*SO 1 dO*SO 1% Sofd().
Suppose s is closer to d, i.e. so > @, then
2 2 2yal?
[vol < 7ol _ [l _ (110)
So—do (d1+d0)/2—d0 dl—d()
It follows that
2 1 2w 2w|fu—d +4d
€ 1 2w _2wfp-ditdy 111
dl — S0 12 dl 7d0 ,UJ(dl 7d0)
Rearranging yields:
2u(dy—d
cpld—d) 4 o (112)

2|V0|2/L+d0 dl

Note that for y > (dy — dy)/2|v|*, the denominator is finite and positive. Also, since |vy|*11 < 11, we can
write:

€ (di — do)

— 11
2,u+d0 4 <d; — s (113)

This shows that we can choose Cj to be a function of 1 > (d; — dy) /2|vo|*. However, we can also find a
simpler but less tight bound which is independent of x. Note that s is at its closest to d; for ;1 — +o0.
Therefore, we have

62/1 (dl — do) o 62 (dl — d())
m - )
p——+00 2,U,+d0—d1 2

(114)

and it follows that for ;2 > 0,

62 (d] — d())

> <di —so (). (115)

Therefore, we can choose Cy = (d; — dy) /2.
We now show s; — d; > 0. Note that for 1 = 0, we get s; = d,, and for p1 >0, s; —d; > 0 because v; > 0
for all j. Hence, we have

s;—d; =0, (I16)

dy — sy > C()Ez. (117)
Adding two inequalities together gives

§1— So > C062. (118)

36



10P Publishing

Quantum Sci. Technol. 10 (2025) 045054 E Gabbassov and A Kempf

Appendix J. Proof of theorem 10

We assume that the following Hamiltonian interaction governs the adiabatic evolution:
H(t)=IQHsQI+1QIQ Hg+ p(t) [ [v){v| J1n
The joint initial state of AAB is:
[Wiap) = cuii|di) ai) |bo) + | ;) |a;) [bo) (J2)

Theorem 10. Consider a tripartite quantum system AAB initially prepared in a state described by (]2). Assume
that the system undergoes adiabatic evolution according to the Hamiltonian H(t), as defined by (J1) with |[v){v|
being arbitrary. Then the purity-based coherent information for the direct channel A — A’ is given by

PI* = Tt [Trp [|sio)(sio| ] Trs [[sjo ){sio|]]
— VTr [Trg [[sio)(siol] Trs [|sjo )(s0]]] - (J3)

where v = 2|v;i|*| o]

We commence with an initial state |15 ,5) € H; ® Ha ® Hp. Let {d;} be an arbitrary basis of H ;. Let
{|am) |bn) } be an eigenbasis given by Hamiltonians H, and Hp, which act on the Hilbert spaces 4 and H,
respectively. Then, for some fixed indices i and j, the initial state is defined as

|wAAB> (au |ai) |ai) + Qjj |a]> ’”J>) |bo) - (J4)

Here c;; and a;j are complex coefficients such that |e;;|* + |aj|* = 1. We express the initial state in matrix
density formalism, i.e. pi4p = [¢1,45)(%74p|- The goal is to compute the purity of the final state p;, ,, of the
evolved subsystem A’A’. Recall that given an initial eigenstate |ai) |bo), the final eigenstate |sy) is given by
lemma 1. That is, we have:

Isk0) = (sl = D)~ ) (Js)
Therefore, by lemma 1, the final state pz,,, is given by:

Piar = |l [ai)(ai| @ Trg [|sio)(sio] (Je)
+aio [a:)(a;] @ Trs [|sio)(sp
+agion |a)(ai| @ Trg [|s0)(siol
+lgil* |a)(@] @ Trp [[si0)(si0]]

In the above, we absorbed dynamical phases that arise during the adiabatic evolution into the definition of
eigenbasis vectors |ai). Alternatively, we could carry the dynamical phases throughout the analysis to find
that they eventually simplify unity. Therefore, for ease of computation and clarity, we go with the former
approach. The square of the final state is:

P = lal* |a:-><a1—| ® Trg lsio)(sio )

+ |evii? ><a]‘ ® Trp [|sio){sio|] Trp Hs,—o><5jOH

+ |a,.,.|2|%| jd@i){ail @ Trp [[sio )(so|] Trs []sio){sio]

+ o |ai)(a;] @ Trs [[si0)(sol] Trs [|si0){si]

+ lai*ega; ;)| © Trg [|s0 )(sio] Trs [Isio)(siol]

+ il |* |@;)(a;| @ Trs [[si0){sio| ] Trs [[si0)(sjo]]

+ | P e [a; (@i @ Trg [[sio )(so|] Tra [|si0 )(sio]

+ gl [a)(@] @ Trs [|s0)(sp]” (J7)

Upon computing the trace of p%, > and recognizing that Tr[|a,,)(d,|] yields the Kronecker delta d,,,, we can
derive the expression for P((AA)’):
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P((A4)") =lauil'Tr [ (Trs lsu)sol))

o T [ (Tra [[sn)(s0]]) ]
+ 2ol T [T [[si) (s ] Trs [0 )(so]]]

Given (J6) it is straightforward to compute P(A’). We first trace out A and obtain:
par = | Trg [[sio){siol] + e [>Tz [[s0){spo]
Squaring p,’ and taking its trace yields:
P(A") = Jal*Tr | (Trs [|s)sol))’]

o oy Tr [ (Tra [[s0)(s0]]) ]
+ 2|a,~i|2\a]-j\2Tr [TrB [|sio)(sio|]] Trp [|sjo><sj0m

Subtracting P(A”) from P((AA)’) yields the result.

Appendix K. Proof of theorem 11

E Gabbassov and A Kempf

(J8)

(J9)

(J10)

Theorem 11. Under the assumptions stated in theorem 10, the purity-based coherent information for the

complementary channel A — B’ is given by

PI° = vTr [Tra [|sio )(sjo| ] Tra [|sj0 )(sio|]]
— UTr [Tra [[sio){siol] Tra |50 )(si0|]] -

where v = 2|;i|*| o]

(K1)

The proof of theorem 11 follows the exact steps of the proof in appendix | except we trace over A instead

of B. Therefore, the purity of P((AB)’) reads as:

P((4B)") = ol Tr [ (Tra Iso) sol))

 Jogg|Tr [ (Tra [ls0)(s0])’]
< 2o T [Tea [[so)(so] Tea [[s1) (sl

Additionally, the marginal purity of B’ is given by:
P(B') = ol *Tr | (Tra[Jsi)(sil])’]

o Jog T | (Tra [Jsn) (sl ]) ]

+ 2|ai,-|2|ajj|2Tr [TrA [|si0)(sio|] Tra HSJ‘OXSJ'OH]
Subtracting P(B) from P((AB)’) yields the final result.
Appendix L. Proof of lemma 12

Lemma 12. Let pap := |s)(s| and pa := Trg [pap], then the purity of pa is given by

Vi Vi v Vi
P(PA) _ ,}/4 i i) P p ,
2 =) =) = dy) (o)

where vy = (v|a;, b;) is a coefficient matrix of |v) in the eigenbasis {|a;) |b;)};j of D and

‘ 2) —-1/2

(K2)

(K3)

(L1)

(L2)
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By lemma 1 we have

Ial 1) (L3)

VZ

where {|a;) |b;) }j is the eigenbasis of D = Hy ® I+ I ® Hp. It follows that:

v
pag = |s) |—22 l]

’JkP

kZ[kp |a;) |bj> (ay] <bp| (L4)

Tracing over B yields:

Vij
pa=Trg (] v E E s—]d s d |a,><ak| (L5)
o 1]
J

Squaring p4 and tracing yields the result.
Appendix M. Proof of lemma 13
The eigenvector of H(t) is given by:
) =7 (s1-D) ') (MD)
Lemma 13. Let|s), |s"), |s'") and |s"'") be eigenstates defined as in (M1). Then the following holds:

Vi Vi Vip Vip
T (s—dy) (s —dy) (s —dip) (s — dip)

Tr [Trg (56" Tra )" )] = 779" (M2)

The proof follows the same steps as the proof in appendix L except we use lemma 1 to compute |s)(s’| and

|s"")s"""| where s,s’,s"’ s'"" are eigenvalues of final Hamiltonian:

Vi
W'l =7 Z Jd T |at 1)

ijkp

5k

Vij Yip
|S/I>< I//| 77//7/1/ d S”/ d |b> ak| <bp| .
ijkp

Tracing over B yields:

Vi
Trg ([s)(s"]) =y ZZ Jd,]s— |ai)(ax!,

TI‘B(‘S”XS”, _ //,Y”/ZZ — d 5”’ |al><ak|
J

Computing the product Trg(|s)(s’|)Trp(|s’’)s"’’|) and tracing yields the result.
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