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Scaling bottlenecks the making of digital quantum computers, posing challenges from both the quantum and

the classical components. We present a classical architecture to cope with a comprehensive list of the latter

challenges all at once and implement it fully in an end-to-end system by integrating a multi-core RISC-V CPU

with our in-house control electronics.

Our architecture enables scalable, high-precision control of large quantum processors and accommodates

evolving requirements of quantum hardware. A central feature is a microarchitecture executing quantum

operations in parallel on arbitrary predefined qubit groups. Another key feature is a reconfigurable quantum

instruction set that supports easy qubit re-grouping and instructions extensions.

As a demonstration, we implement the surface code quantum computing workflow. Our design, for the first

time, reduces instruction issuing and transmission costs to constants, which do not scale with the number of

qubits, without adding any overheads in decoding or dispatching.

Our system uses a dedicated general-purpose CPU for both qubit control and classical computation, includ-

ing syndrome decoding. Implementing recent theoretical proposals as decoding firmware that parallelizes

general inner decoders, we can achieve unprecedented decoding capabilities of up to distances 47 and 67
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with the currently available systems-on-chips for physical error rate p = 0.001 and p = 0.0001, respectively,

all in just 1 µs.

CCS Concepts: • Computer systems organization→ Quantum computing; • Hardware→ Quantum

error correction and fault tolerance;

Additional Key Words and Phrases: fault-tolerant quantum computing, quantum computer architecture, par-

allel decoding

ACM Reference format:

Fang Zhang, Xing Zhu, Rui Chao, Cupjin Huang, Linghang Kong, Guoyang Chen, Dawei Ding, Haishan Feng,

Yihuai Gao, Xiaotong Ni, Liwei Qiu, Zhe Wei, Yueming Yang, Yang Zhao, Yaoyun Shi, Weifeng Zhang, Peng

Zhou, and Jianxin Chen. 2023. A Classical Architecture for Digital Quantum Computers. ACM Trans. Quantum

Comput. 5, 1, Article 3 (December 2023), 24 pages.

https://doi.org/10.1145/3626199

1 MOTIVATIONS AND SUMMARY OF RESULTS

As quantum computers become more sophisticated [2, 3, 16, 41], their demands on the classical
control multiply accordingly. In this section, we analyze those challenges, then summarize our
solutions. We confine this work to the superconducting-circuit platform, the focus of our team.
We first review the setup as the starting point for our discussion.

Superconducting system setup. Figure 1 illustrates a standard setup for a superconducting
quantum computing system. Quantum information is stored physically on superconducting qubits
on a quantum chip. To enable superconductivity and to suppress thermal noise, the quantum chip
is cooled cryogenically inside a dilution refrigerator. To enable state evolution and measurement,
the superconducting circuits are coupled to drive lines connecting to room-temperature control
electronics, which in turn comprise arbitrary waveform generators (AWGs), digitizers, IQ mix-
ers, and so on. The control electronics are further driven by a general-purpose processing unit
such as a PC.

Quantum computing workflows. Applications are the end goals of quantum computers,
thus the origins of their design requirements. Most applications belong to one of the two main
paradigms: noisy intermediate-scale quantum (NISQ) applications and fault-tolerant quan-
tum computations (FTQC). NISQ applications operate on noisy, unprotected physical qubits,
limited in scale and in precision. FTQCs operate on encoded logical qubits, each consisting of
(likely) thousands of physical qubits. The logical qubits have drastically reduced sensitivity to
physical-level noises, allowing computations of an arbitrary length and scale, thus consequently
the ultimate quantum advantages.

In NISQ, the PC sends the quantum circuit to the control electronics. The latter parse the circuit
into microwave waveforms, play them synchronously on the drive lines to the qubits, process the
measurement responses from the quantum chip, and finally, return the measurement results to the
PC. The PC can then perform a classical post-processing, before possibly starting the next round
of quantum circuit execution.

FTQC differs from NISQ in several key aspects. First, it requires constant extraction and de-
coding of the classical error syndromes, which are constantly churned out by the faulty quantum
circuits. The decoding, in turn, requires real-time and intense classical computation. Second, while
NISQ executes a static circuit, FTQC requires dynamic quantum circuit generation according to
the decoding results.

Both NISQ and FTQC demand seamless coordination and collaboration between classical and
quantum computational resources, which, in turn, require a co-design of classical and quantum
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Fig. 1. An experimental setup for qubit driving and measurement. The dilution refrigerator is depicted as the
cyan box, with different temperature zones separated by dashed lines. The PC driving the control electronics
is omitted.

architecture. We focus on the design and implementation of classical architectures. We analyze the
challenges from two perspectives: scaling-up and actual implementation of a complete system.

Challenges in scaling up the classical architecture. Maintaining a high precision in the
control of quantum hardware is the primary requirement here, as it would directly affect fidelities
of the quantum operations involved. Failing it would result in performance loss that eventually
needs to be compensated by the quantum hardware, compounding the difficulty for the latter.
Specifically, for superconducting qubits, microwave pulses played on different AWG channels and
the sampling window of digitizer channels need to be synchronized at the picosecond level to
ensure high-fidelity physical operations [42].

A second set of challenges are caused by the large number of instructions—the efficiency of their
issuance, transmission, and execution as the number of qubits grows. These problems have been
recognized by several authors [6, 10, 18], and we refer to them together as “instruction stresses.”
In FTQC, dynamic quantum instructions need to be issued and transmitted fast enough to keep in
pace with the rapid quantum execution, posing a hard constraint on the classical architecture. This
may not be required for NISQ but is still desirable, as it would decrease the total running time.

Syndrome decoding is yet another major bottleneck to FTQC classical architecture [36]. For
surface code schemes on present-day superconducting qubits, one round of syndrome extraction

ACM Transactions on Quantum Computing, Vol. 5, No. 1, Article 3. Publication date: December 2023.
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takes roughly 1µs [1] and generates O (d2) bits of syndrome information in parallel, for d being
the code distance. Against this increasing syndrome size, the decoding algorithm needs to keep up
with the constant syndrome extraction time and to avoid exponential syndrome backlog.

Multiple decoding schemes were proposed to tackle this problem [11, 12, 17, 21, 37] but can only
handle code distances no more than 11, even with specialized hardware. Recently, a new parallel
decoding scheme was proposed independently in References [33, 34]. An implementation of the
scheme achieved a code distance of 11 for physical error rate p = 0.4% [31].

A fourth set of challenges originates from a desirable feature that we call “permissiveness,”
which means the ability to accommodate evolving requirements by other components of a quan-
tum computer. Our field experiences indicate that implementing a complete classical architecture is
time-consuming and labor-intensive. However, in this early stage of quantum computing, changes
are rapid in applications, hardware characteristics, and error-correction schemes. Thus, a stable
yet permissive classical architecture would be cost-effective in the classical-quantum co-design
process.

Challenges for implementing a complete system. Many researchers have proposed inno-
vative solutions addressing one or a few of the above problems. Ultimately, a single system needs
to be built for a real quantum computer. Building such a complete system has the additional chal-
lenge of balancing competing objectives with currently available and compatible technologies. To
our knowledge, there has not been a system implementation addressing all the aforementioned
challenges in scalability.

Our contributions. We present and implement a classical architecture to address all the scala-
bility challenges mentioned above in one single system.

(1) Our system provides high-fidelity qubit control by interconnecting one-chassis PXIe systems
through a star-like hierarchy with high-density connectors. This design synchronizes, with
high accuracy, pulses from different control electronics, enabling precise qubit control even
as the system size increases, thereby maintaining high-fidelity. This conclusion is supported
by the extensive testing of the channel-to-channel and phase jitter of the AWG outputs.

(2) To address instruction stresses, we develop an efficient “quantum instruction pipeline” that
combines Single-Instruction-Multiple-Data (SIMD) with a broadcasting mechanism.
This pipeline enables parallel application of the same type of gate on arbitrarily-sized qubit
groups. The operation types and the qubit groups of application-specific instructions can be
easily configured either prior to the execution of the quantum program or during runtime.
Additionally, the costs across instruction issuing, transmission, dispatching, and execution
do not scale with the size of each qubit group.

(3) Our system’s permissiveness is achieved through a combination of features, including a recon-
figurable quantum instruction set, Memory-Mapped IO (MMIO) in the microarchitecture,
and a portable general-purpose CPU. The instruction set and the underlying MMIO-based
microarchitecture facilitate the incorporation of new quantum instructions.

(4) We achieve unprecedented performances on decoding throughput for surface codes, a main-
stream approach that our architecture and the implemented system are nevertheless not
restricted to. More specifically, we implement the surface code and a parallel decoding
firmware based on the recent theoretical proposals [31, 34] in a dedicated CPU and bench-
mark its performance on a development board. By leveraging our in-house Union-Find and
PyMatching 2 [20] as inner decoders, we can decode up to distances 13 and 31 on SiFive
P650 [32] or T-head C910 [9], or 41 and 67 with ET-SoC-1 [15], all in just 1 microsecond for
physical error rate p = 0.0001.

The proposed classical architecture is implemented fully in an end-to-end quantum computer
system by integrating a multi-core, vectorized RISC-V CPU with our in-house control electronics.
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Our system also features an MLIR-based compiler to support the proposed reconfigurable quantum
instruction set and enables optimization possibilities on various abstraction layers. We highlight
the following features among the many of our implemented system.

(5) Low communication latency A key metric for FTQC is the “decoding latency,” i.e., the time
between the completions of syndrome generation and decoding. Such latency consists of the
decoding algorithm latency and the communication latency between the control system and
the quantum device. In our design, we use on-board communication to reduce the latter. This
design also enables other capabilities where latency plays a critical role, such as on-the-fly
calibration [19, 26, 29] and just-in-time compilation [39, 40].

(6) Load balancing through multi-core CPU The bottleneck in classical computation is not always
syndrome decoding and can vary during the computational process. To accommodate differ-
ent scenarios, we use a dedicated multi-core CPU in our system, allowing dynamic allocation
of cores to syndrome decoding, qubit control, or other computation-heavy tasks. This design
allows us to achieve optimal performance while avoiding the unnecessary complexities and
cost of using specialized hardware for syndrome decoding.

Comparison with previous work.
To the best of our knowledge, our architecture proposal and the resulting actual implementation

represent the first attempt to address, in a single system, the above comprehensive list of scaling
challenges for the classical architecture.

Instruction stresses have been known for long, with various mitigating approaches proposed
[6, 10, 18]. Those include using SIMD and Very-Long-Instruction-Word (VLIW) to reduce the
instruction issuance rate [18] and multiprocessors to increase quantum operation and circuit-level
parallelism [43]. However, those methods provide only constant-factor improvements and are in-
sufficient to cope with the increasing overhead that scales with the code distance in surface code
quantum computing.

The QuEST proposal [35] addresses the instruction bandwidth problem by employing dedicated
programmable micro-code engines. While it shows promise for enabling real-time instruction is-
suing, it crucially relies on an assumption from the underlying primeline microarchitecture [22]:
that all qubits driven at a given time must share the same frequency.

This may hold for some quantum computing platforms, such as cold atoms or trapped ions, but
not for superconducting qubits, where frequency differences are likely inevitable and sometimes a
design preference. Furthermore, the absence of scaling analysis makes it unclear how the frequency
requirement would affect the performance in an actual implementation.

Syndrome decoding has been another well-known concern in the quantum computing commu-
nity for over a decade [36], with proposals ranging from efficient algorithms to specific microar-
chitectures [11, 13, 14, 20]. Before our work, it remained an open problem if a general-purpose
CPU with on-board communication to the control electronics would be sufficient to provide the
required decoding throughput. We answer this question affirmatively for the first time by combin-
ing the recent parallel decoding schemes [31, 34] with an efficient in-house implementation for the
Union-Find decoder and a recent implementation of the Minimum Weight Perfect Matching
(MWPM) algorithm [20].

2 ARCHITECTURE DESIGN AND SYSTEM IMPLEMENTATION

2.1 Architecture Design

See Figure 2 for a block diagram of our system design. The MCU contains a dedicated CPU. Besides
controlling the qubits via the electronics driver, the CPU can also execute classical tasks offloaded
from the host PC, using dedicated cores labeled the classical computing unit (CCU). Such tasks
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Fig. 2. Block diagram of the proposed classical architecture. The architecture consists of a host PC, a main
control unit (MCU), control electronics (In-house Quantum Electronics). The quantum chip is connected with
the control electronics via drive lines, while the host PC, the MCU, and the electronics are jointly connected
via PXIe. Additionally, the MCU connects with all electronics via a star-like connection. A dedicated unit in
the MCU is responsible for driving the control electronics. The MCU is equipped with a portable CPU, and
a portion of it, called the classical computing unit, is allocated for runtime computation-heavy tasks such as
syndrome decoding. In our implementation, the digital-analog and analog-digital units are made in-house
and are called in-house quantum electronics (IQE), and their corresponding driver unit in the MCU is called
the IQE driver. Please note that all other modules can be configured via the command parser; however, we
have omitted the corresponding arrows in the diagram for the sake of simplicity.

naturally arise from logical quantum program execution, dynamic calibration, just-in-time compi-
lation, and so on. The offloading greatly shortens the communication latency with the QPU.

A quantum program generally comprises both quantum and classical components that collabo-
rate to solve a problem. In Section 4, we will introduce our front-end language and the correspond-
ing compilation support. However, the design and workflow of our system are not restricted to
specific quantum programming languages. When a quantum program is executed on a host PC,
the quantum subroutines and, depending on the implementation, potentially some classical sub-
routines will be sent to the MCU. The MCU then processes these quantum or quantum-classical
hybrid tasks by issuing both classical and quantum instructions. Classical instructions are carried
out on the dedicated CPU for classical control and computations, while quantum instructions are
executed through requests to our in-house quantum electronics (IQE) driver. The IQE driver
dispatches corresponding “IQE instructions,” or “commands,” to IQE, which, in turn, drives the
quantum processor. At the CPU level, the “quantum instructions” are implemented as pseudo-
instructions that expand to MMIO load/store instructions. These MMIO instructions interact with
a special memory region, and the electronics driver decodes them and dispatches “electronics-level
instructions,” which will be explained shortly, through broadcasting for communication with the
control electronics.

ACM Transactions on Quantum Computing, Vol. 5, No. 1, Article 3. Publication date: December 2023.
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The electronics-level instructions specify the pulse sequences and their corresponding timing
information to the control electronics. The latter parse the instructions and feed the pulse sequence
information into a local queue. The pulse sequence is not played until a special “trigger” signal ar-
rives at the control electronics, which then plays the pulse sequence through its ports and empties
the queue, waiting for the next round of pulse instructions.

We use various “instruction” terminologies. For clarity, Figure 4 exhibits a taxonomy, with more
details in the main text.

In addition to the aforementioned general setup, a key feature of our architecture is a quantum
instruction pipeline that naturally supports a large number of parallel repetition of a same gate
and allows for easy reconfiguration. This is enabled jointly by several components, which we
elaborate below.

Reconfigurable quantum instruction set. Exploiting MMIO’s flexibility, our modular quan-
tum instruction set comprises “pulse-level instructions” for qubit control and calibration and “gate-
level instructions” for quantum circuit execution. By having both levels available, it allows for flex-
ibility in implementing quantum algorithms and calibrating quantum devices, similar to other sys-
tems [6, 18, 43]. We distinctly exploit what we call the brickwork structure found in typical quantum
circuits: There is a small number of single-layer sub-circuit of the form

⊗
i
GSi , for some partition

{Si }i of either the whole set or a large subset of the qubits into equal-sized subsets, and an identical
gate G acting on each subset. We allocate different MMIO addresses for the partition identifiers
and specify the gate type via the message written to the address. Decoding and dispatching of the
instruction are left to the underlying microarchitecture. This allows a lightweight specification
of application-specific instructions on user-defined qubit partitions, which, in turn, significantly
alleviates the cost of instruction issuing and data transmission.

Instruction dispatching via broadcasting. Some designs may prioritize certain aspects of
instruction processing at the expense of others. For instance, adding complex instructions to re-
duce the instruction issuing rate can lead to more complex decoding and dispatching. However,
our microarchitecture support does not come with any hidden costs. This means that we have suc-
cessfully reduced costs at every stage of the instruction processing pipeline. When dispatching a
single gate instruction to multiple control electronics, one-to-one communication would scale the
cost linearly with the number of control electronics, impeding scalability. We avoid this problem
by exploiting the few-distinct-partition property of the brickwork structure through the built-in
broadcasting mechanism of the star-like connection.

Each signal transmitted from the electronics driver broadcasts automatically through the star-
like connection, thus each IQE instruction is sent to a collection of control electronics simulta-
neously, regardless of if a control electronic is meant to be involved in the instruction. To utilize
this, each electronic device holds a “partition mask” specifying which partitions it is in. Each IQE
instruction broadcast from the electronics driver comes with a partition identifier. Upon receiving
an instruction, each electronic device checks whether the partition identifier of the broadcast in-
struction matches one of the partition identifiers in its partition mask. If so, then it proceeds to
process the instruction and ignores it otherwise.

The MCU, thus, can issue at once a same instruction to all devices with a common partition
identifier, realizing microarchitecture-level SIMD. The partition masks are stored in local regis-
tration entry (REG) files on each electronic device. They are easily reconfigurable, either using
PXIe between runs or in real-time via the same star-like connection.

Instruction decoding. To decode a quantum instruction received from the CPU, the elec-
tronics driver extracts the electronics-level instruction type determined by the value written
through MMIO and appends it with the partition identifier determined by the MMIO address.
Both mappings are stored in a local REG file that can be reconfigured if necessary. The assembled
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electronics-level instruction is then dispatched through the broadcasting system mentioned
before.

This microarchitecture does not incur extra overhead on either decoding or dispatching when
the partition size increases (as in the case of more qubits).

Apart from the above quantum instruction pipeline problems, we highlight some design choices
that address scaling.

Pulse synchronization via triggers. All of the ADCs and the DACs are driven in the same
clock domain through a phase-locked loop and a star-like connection, with one rubidium oscil-
lator used as the system root clock. Our design further synchronizes pulses on different control
electronics via a dedicated trigger mechanism. The pulses are not played through DACs immedi-
ately upon processing of the electronics-level instructions, but rather are stored in a local queue.
When a trigger instruction is issued from the MCU, the trigger signal arrives at each control elec-
tronic device at the same time, guaranteeing pulse-level synchronization. For further information
on IQE, please refer to Reference [42].

Portable, tightly integrated but loosely coupled dedicated CPU. Unlike previous
schemes [6, 10, 18, 43] that handle the communication of the control electronics and the MCU
by new and dedicated CPU instructions, ours aims to avoid substantial CPU modifications, thus
works solely with the unmodified classical instruction set instead. The MCU and the electronics
driver are coupled only through MMIO instructions. This loose coupling provides portability and
extensibility, as the same communication scheme can in principle be used with all CPUs support-
ing the same underlying ISA, or even other classical ISAs, with little to no modification. However,
the dedicated CPU is tightly integrated to the control electronics through onboard communication,
which significantly reduces the communication cost.

2.2 System Implementation

Our design can in principle be implemented over various classical and quantum hardware.
For our particular implementation, we assume room-temperature, as opposed to cryogenic,
electronics, as they are more widely deployed today. While there is no fundamental reason to
prefer RISC-V, ARM, or other instruction set architectures, we choose RISC-V for its potential
in future system evolution. For instance, we anticipate that integrating the required quantum
instruction pipelines into the RISC-V IP core would be less limited due to its open license business
model.

Hardware setup. We implement a prototype by integrating a RISC-V IP core with our room-
temperature electronics, which include a timing control module (TCM), four-channel AWGs,
four-channel data acquisition modules, a local oscillator, amplifiers, mixers, and a high-precision
voltage source. As mentioned above, the in-house AWGs and the digitizers are collectively referred
to as IQE.

We implement a real-time digital signal processing system on built-in FPGAs of the IQE, featur-
ing precise timing control, arbitrary waveform generation, and parallel IQ demodulation for qubit
state discrimination. The FPGA in TCM serves as the master FPGA running the MCU and the IQE
driver. The master FPGA communicates with the AWGs and the digitizers through high-speed
digital backplane transmissions.

In the aforementioned configuration depicted in Figure 2, we have assumed an unrestricted
number of connections in the star-like topology. Now, we will explain how we can scale up from
chassis-based systems that have a limited number of connections. A standard chassis with 18 slots
meets the requirements of 10 qubits’ control and readout. In such a one-chassis PXIe system, the
master FPGA with a soft RISC-V IP core is used to provide triggers and instructions to other AWGs
and digitizers. To control more qubits, the master FPGA in each one-chassis PXIe system can be
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Fig. 3. Expansion scheme via star-like connection.

Fig. 4. Taxonomy of instructions.

interconnected through high-density connectors via a star-like expansion, as illustrated in Figure 3.
Only one master FPGA needs to implement the soft RISC-V IP core as the MCU of the whole system.
The MCU broadcasts the instructions to the master FPGAs of all those one-chassis PXIe subsystems
by a daisy chain interface or star-like interface, and then each master FPGA broadcasts to AWGs
and digitizers in the same chassis.

We will now provide a comprehensive overview of various types of instructions present in our
architecture, including the IQE instructions as well as the RISC-V quantum instructions, as illus-
trated in Figure 4. Together they facilitate seamless control over the quantum processor.

ACM Transactions on Quantum Computing, Vol. 5, No. 1, Article 3. Publication date: December 2023.
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Table 1. Summary of Instructions to the IQE Driver

Type Operands

Trigger Repeat count, repeat interval
Wait Time
Play Channel, waveform index, parameters

In the “Operands” column, underlined text indicates the “address

operand” (an operand that is determined by the memory address

rather than a value written); bold text indicates the “main

operand” (i.e., writing this operand issues the instruction to the

IQE driver); all other operands are in italic text, indicating that

writing to them does not issue the instruction and that their

values are preserved in the IQE driver memory.

IQE instructions. We specify the electronic-level instructions, or commands, broadcast by the
IQE driver via the star-like connection, hereafter referred to as the “IQE instructions” for con-
venience (note that those “instructions” are not directly related to any CPU-level instructions).
Currently, there are three types of IQE instructions, as summarized in Table 1:

— “Trigger” : As mentioned above, the “Trigger” instruction tells the IQE driver to actually start
executing all quantum operations in the queue. To facilitate repeated measurements fre-
quently occurring in qubit calibration, we ensure that the IQE driver has built-in function-
ality to repeat all quantum operations in the queue, with a specified number of repetitions
and time intervals.

— “Wait” : The “Wait” instruction controls the relative timing between quantum operations in
the same trigger, giving the user program full control on scheduling.

— “Play” : The “Play” instruction is the most basic quantum instruction. It plays a predefined
waveform or a predefined combination of waveforms on one or more channels, which corre-
sponds to quantum operations such as qubit reset, 1- or 2-qubit gates, or qubit measurement
under the computational bases. Quantum measurement instructions differ from other oper-
ations in that they yield a result; these two cases are differentiated by the corresponding
waveform indices, where indices i ≥ 128 correspond to measurements, while indices < 128
are for no return values. The digitizer decodes the measurement instructions and sets the
sampling window according to the parameters specified in the instruction. After IQ channel
demodulation and data processing, the digitizer transmits the result to the CPU’s system
RAM.

Quantum instruction set. We here present an instantiation of a modular set of pseudo-
instructions at the CPU level, consisting of pulse-level instructions for device calibration and gate-
level instructions for algorithm implementations. These pseudo-instructions are not implemented
directly, but are subsequently expanded to RISC-V MMIO operations via built-in load/store instruc-
tions. We also provide an example MMIO layout compatible with existing RISC-V architectures.

Table 2 illustrates the current design of the quantum instruction set and its corresponding expan-
sion into MMIO load/store instructions. The instruction set features a hierarchical design, consist-
ing of pulse-level, gate-level, and application-specific instructions. Each higher-level instruction
can be decomposed into lower-level instructions with the same functionality, but using higher-
level instructions reduced the decoding and dispatching overhead.

— “Pulse-level Instructions” play, qwait, and trig: specify pulses, their relative timing, and
the issuance of the trigger signal, respectively. More precisely, play specifies the actual
control pulse sequence, qwait specifies the scheduling of the corresponding pulses, and
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Table 2. Summary of RISC-V Pseudo-instructions Designed for Communicating with the AQE Driver

Pseudo-instruction Base instruction(s) Meaning of parameters1

Pulse-level

trig rd, rs1, rs2
sw rd, ADDR_TRIGGER+8
sw rs1, ADDR_TRIGGER+4
sw rs2, ADDR_TRIGGER

rd — bit mask of channels
rs1 — repeat count
rs2 — repeat interval

qwait rs1 sw rs1, ADDR_WAIT rs — time

play rd, imm12(rs1) sb rd, ADDR_PLAY + imm12(rs1)
rd — waveform index
imm12(rs1) — memory offset for the channel

fmr rd, imm12(rs1) lw rd, ADDR_FMR + imm12(rs1)
rd — destination register
imm12(rs1) — result storage

address

Gate-level
sq rd, imm12(rs1) sb rd, ADDR_GATE1Q + imm12(rs1)

rd — gate index
imm12(rs1) — memory offset for the qubit

tq rd, imm12(rs1) sb rd, ADDR_GATE2Q + imm12(rs1)
rd — gate index
imm12(rs1) — memory offset for the qubit pair

Application-specific app rd, imm12(rs1) sb rd, ADDR_APP + imm12(rs1)

rd — operation index
imm12(rs1) — memory offset for

the operation
grouping

ADDR_* are memory addresses that are determined at design time and thus are constant in the assembler.

trig triggers the actual execution of previously issued instructions. Additionally,fmr loads
the qubit measurement results from previous runs from the predetermined addresses.

— “Gate-level Instructions” sq and tq: correspond to single-qubit and two-qubit operations,
respectively. They share a similar expansion as the pulse-level “play” instructions, with dif-
ferent address offsets. As a single-qubit operation (e.g., a gate, a measurement, the qubit
reset) usually consists of pulse plays on different physical channels with different timing
constraints, a gate-level instruction is usually decoded into multiple IQE instructions by the
IQE driver. This enables a relatively decoupled design of the MCU and the quantum archi-
tecture, as the exact interpretation of gate operations is only defined at the IQE driver level.

— “Application-specific Instructions” app: shares the same instruction format as the pulse-
level play, but its decoding into IQE instructions is entirely left to the user. The user can
design the decoding of app instructions as different combinations of IQE instructions, as
long as it does not incur too much overhead on the IQE driver side. As the use cases of
quantum processors in the near and far future remain largely uncertain, such customizable
instruction design provides freedom of exploration with different potential use cases, includ-
ing NISQ and fault-tolerant quantum computation.

We show in Table 3 an example MMIO layout supporting 0×4000, or 16, 384, physical qubits, com-
patible with existing RISC-V architecture designs, including Si-Five, T-head, and so on. The allo-
cated address space supports individual qubit control over quantum memory experiments on a
surface code patch with a code distance of 90, or lattice surgery on two qubits with a code distance
of up to 64. Note that neither distances is a hard constraint, as the MMIO address space is easily
extendible to support a larger-scale computation.

3 EVALUATION METHODOLOGY

A full demonstration of scalability requires a large-scale quantum processor yet to be built. We
thus focus on implementing essential features over surface code quantum computing using our
architecture to argue that known scalability challenges can be resolved through our design.

More specifically, we reach our conclusion by focusing on components involved in large-scale
computation or communication and analyzing how the incurred costs scale with the code distance
and the quality of the quantum device. Our architecture design is not specific to surface-code-based

1The load/store instructions lw, sw, sb in this column are used to transfer a “word” or a “byte” between memory and

registers.
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Table 3. An Example of MMIO Address Layout

Name Address Type

ADDR_TRIGGER 0x40001000 int32
ADDR_WAIT 0x40002000 int32
ADDR_FMR 0x40003000 int32[0x1400]
ADDR_SQ 0x40010000 uint8[0x4000]
ADDR_TQ 0x40014000 uint8[0x8000]
ADDR_PLAY 0x4001c000 uint8[0x8000]
ADDR_APP 0x40024000 uint8[0x4000]

quantum computing, thus can be readily generalized to other quantum error correcting codes or
fault-tolerant schemes.

3.1 Surface Code Quantum Computation

Surface code encodes the logical information of one qubit into a patch of d × d physical qubits,
such that any error happening on at most �(d − 1)/2� physical qubits can be detected through
intermediate measurements and be corrected accordingly. A popular approach to realize logical
Clifford operations for the surface code is “lattice surgery” [23]. Specifically, patches of logical
qubits are arranged on a large grid, with additional physical qubits positioned in the “routing
space” [7] between them. Then, lattice surgery allows measuring logical Pauli jointly over multiple
patches, using interactions only between pairs of nearest-neighbor physical qubits.

There are alternatives to lattice surgery for realizing logical operations on surface codes (see Ref-
erence [5] and references therein). In this work, by “surface code quantum computation”
(SCQC), we refer to the approach through lattice surgery.

Figure 5 shows a schematic workflow of SCQC from the perspective of classical control. Upon
receiving a pre-compiled quantum program, the MCU issues quantum instructions to an “instruc-
tion decoding and dispatching unit” (IDDU) through MMIO when needed. The IDDU then
decodes the quantum instructions into pulse-level instructions readily executable on each of the
electronics and dispatches them accordingly. The control electronics interact with the quantum
hardware and return the raw measurement results to a dedicated memory region.

The incoming syndrome information is fed to and decoded by a classical firmware, called
the “syndrome decoding unit” (SDU), that runs on the dedicated CPU. Once decoded, the
logical measurement results are fed to the MCU for adaptive real-time generation of the future
instructions required by fault-tolerant quantum computing. In our implementation, the IDDU,
the electronics, and the SDU correspond, respectively, to the IQE driver, the IQE, and part of
the CCU.

Two essential subroutines of the SCQC are the “quantum memory experiment” and the “Bell-
state experiment.” Their quantum circuits are illustrated in Figure 6. The quantum memory exper-
iment benchmarks the capability of the classical architecture for preserving quantum information,
and the Bell-state experiment benchmarks that for essential steps in lattice surgery. As SCQC com-
prises mostly these two components (in addition to the preparation of a physical magic state and
a single-patch logical measurement), we use them to validate our architecture.

Besides real-time execution of quantum circuits with large-scale parallel gates, these SCQC
subroutines also require fast processing of classical information in “syndrome decoding.” “Syn-
dromes” are mid-circuit measurement results indicating errors occurring during the FTQC
process. To identify the actual errors and correct them, a dedicated syndrome decoder is needed
to deduce the most likely error given the syndrome information. Ideally, the syndrome decoder
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Fig. 5. Schematic workflow supporting surface code quantum computation (SCQC). The shaded area illus-
trates the blurred boundary of “classical” and “quantum” architecture, the former being our main focus.

needs to have a low error rate of inference and be fast enough not to cause exponential syndrome
backlog [36]. Developing and implementing such a low-error, low-latency, and high-throughput
syndrome decoder is vital to experimental realization of fault-tolerant quantum computation.

3.2 Validation of Scalability

We first establish the feasibility of our design by implementing an end-to-end prototype quantum
computing system and validating that it functions properly with test qubit calibration programs. In
addition, we examine the time variation (“jitter”) of pulse control with increasing size of the star-
like connection, confirming that our design admits scalable pulse synchronization. A low jitter
ensures high-precision synchronization of pulses played on different AWG ports, ensuring high-
fidelity controls.

To verify that our design resolves the instruction stress, we execute the aforementioned SCQC
subroutines. We profile the running time of the classical controller against the running time of
the quantum processor. The classical running time is estimated based on the instruction counts
of an in-house CPU profiling tool over the QEMU RISC-V simulator. The running time of the
quantum processor is estimated based on previously reported running time of each operation on a
comparable superconducting platform [30]. We also quantitatively analyze the cost of instruction
decoding and dispatching. Although neither is a scaling-up matter under our architecture design,
we quantitatively show that the bandwidth of the differential pairs [24] can easily afford parallel
gate instruction dispatching even under our proof-of-concept ISA implementation.

Real-time classical decoding was previously a hard problem, and even dedicated hardware strug-
gled to achieve real-time decoding for code distance d larger than 11 [4, 13, 38]. However, recent
advances [20, 31, 34] have made real-time decoding much more realistic even on general-purpose
CPU. In particular, the sliding-window decoding schemes, introduced independently in References
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Fig. 6. Illustration of the quantum memory and the Bell-state experiments. A quantum memory experiment
on a d ×d lattice initiates n rounds of syndrome extractions. A Bell measurement experiment on two patches
of d ×d lattices with routing space lengthm initiates n1 rounds of syndrome extractions on each patch, then
initiates n2 rounds of syndrome extractions on the joint patch by merging the two patches with the routing
space, and finally initiates n3 rounds of syndrome extractions on the two split patches. All data qubits are
measured under the Z -basis before and after their corresponding syndrome extraction cycles.

[34] and [31], parallelize in scale: They split the decoding task evenly into an arbitrary number of
parallel threads, with only a small constant overhead factor independent of the number of threads.
We implement such a parallelized SDU on a RISC-V development board and benchmark its through-
put on increasing code distances. We also give a rough estimation of the bandwidth required for
syndrome transmission from the IQE digitizers to the SDU, finding it unlikely to become a bottle-
neck for our architecture.

4 SYSTEM EVALUATION

4.1 Real System Demonstration

We implement a prototype system by integrating a RISC-V IP core with our room-temperature
electronics and a demo program to validate the end-to-end quantum computing system consisting
of the prototype system, a quantum chip, and compilation toolchain. The demo program charac-
terizes a qubit’s relaxation time, i.e., the so-called T1 experiment. We compile an OpenQASM 3.0
front-end code to a RISC-V executable using our in-house compilation toolchain and test its cor-
rectness both on a pulse-level quantum simulator and on our in-house superconducting quantum
processor. The result of the physical experiment is shown in Figure 7, demonstrating a successful
run of the calibration routine.

4.2 Scalability of maintaining high-fidelity quantum operation

We now evaluate the feasibility of high-fidelity quantum operations when the chassis-based system
is scaled up using a star-like connection.
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Fig. 7. T1 measurement on the prototype system.

Skew and jitter, which are crucial for system synchronization, can directly affect the accuracy
of quantum operations. Skew, caused by variations in electrical connection length, can usually be
compensated for, as it remains constant. Jitter, however, is a greater concern, as its effects cannot
be calibrated.

To verify the fidelity of quantum operations in a larger system, we set up a 5-layer IQE platform
with one MCU, one AWG, and one digitizer in each layer. The main trigger and the root system
clock were generated by the MCU in the first layer and transmitted to the MCU in the second layer,
and so on, for the subsequent layers. In each experiment, we pick the first layer and one other layer
to test the jitter. The two AWG output channels from the chosen layers were then connected to a
digitizer. We then use fixed-point phase analysis to calculate the jitter between these two signals
as a proxy to evaluate pulse synchronization in larger systems. The critical aspect to consider is
whether the jitter varies with the layer distance.

As depicted in Figure 8, the histograms display the jitter performance at different layer distances.
Our measurements of layer-to-layer jitter show that the standard deviation is approximately 6 ps,
and jitter does not increase with layer distance, indicating effective pulse synchronization within
the system.

Based on the 5-layer results, we conclude that synchronization imprecision of microwave
pulses from control electronics across different layers due to phase jitters is minuscule and will
not become a major bottleneck for quantum computation. With a standard chassis that has 18
slots, the star-like expansion scheme is capable of supporting up to 104+103+102+10+1 = 11, 111
chassis and 111, 110 qubits based on the reasonable assumption that a single chassis can drive 10
additional chassis.
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Fig. 8. Histogram of the channel-to-channel jitter of two AWGs across chassis in different layers.

4.3 Scalability of the Instruction Pipeline

With the MMIO-based custom instruction design, we can test custom CPU-level instructions with
different levels of abstraction against the quantum hardware execution time. In particular, we
consider the following hierarchy of custom instruction abstraction, illustrated in Figure 9.

In addition to pulse- and gate-level instructions, the abstraction includes the following instruc-
tions:

— Parallel-gate instructions encode a layer of identical gates acting on a disjoint collection of
qubits in a single instruction. Circuits involved in surface code quantum computing have the
clear signature of the brickwork structure. Consequently, each round of syndrome extraction
only costs a constant number of parallel-gate instructions. In this case, the number of parallel-
gate instructions required per unit time no longer scales with the code distance d .

— Logical-level instructions further compresses all operations within a “logical cycle” [25] into
a single instruction. A “logical cycle” refers to a repeated structure with d copies of identi-
cal syndrome extraction sub-routines, each consisting of constant layers of parallel opera-
tions with fixed patterns, with optional single-layer parallel operations before or after the
repeats. Such a repeated structure is necessary for fault-tolerance against measurement er-
rors and serves as building blocks for the SCQC. In this case, the total number of instructions
throughout a quantum application stays a constant, regardless of the code distance, leaving
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Fig. 9. A hierarchical instruction set design for SCQC. The applicability of this hierarchical design is made
possible by the MMIO-based infrastructure and the brickwork structure of the syndrome extraction circuits.
The figure only shows a particular syndrome extraction scheme following References [27, 30]; other syndrome
extraction schemes also obey a brickwork structure, albeit differ slightly.

more room for improvement when dealing with other scaling factors, such as the number
of logical qubits.

We estimate the execution time of custom instructions at each abstraction level, scaling in code
distance, in Figure 10. It can be seen that the logical-level instructions stay constant with respect to
code distance, and the parallel-gate level instructions scale linearly albeit with a smaller coefficient
compared to the quantum running time. The pulse-level instructions scale with Θ(d3) and quickly
grow into the millisecond region, thus making them infeasible for surface code with reasonable
sizes beyond a proof-of-principle demonstration.

For both the memory experiment and the Bell-state experiment, the majority of the quantum
execution time is spent on syndrome extraction. Each syndrome cycle takes about 1 µs and takes
15 parallel-gate level instructions. This requires a throughput of 0.96 Gbps on the differential pair.
This is well below the theoretical limit of the bandwidth of differential pairs [24]. As this estimation
does not scale with respect to the code distance, the transmission of IQE instructions to the control
electronics would not become a bottleneck for SCQC.

4.4 Scalability of the Syndrome Decoder

We implement an SDU with a parallel decoding firmware based on the “Sandwich Decoder” algo-
rithm [31, 34]. This firmware splits the decoding task evenly into an arbitrary number of parallel
threads, with a small constant overhead factor independent of the thread number, as long as the
number of surface code rounds is sufficiently large.

We benchmark its throughput on the aforementioned SCQC subroutines. As a sanity check,
we test the SDU implementation on a RISC-V development board and observe an agreement in
results with our QEMU simulator. Benchmarking results are also used to extrapolate the expected
throughput if implementing the SDU on other RISC-V IPs.
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Fig. 10. Comparison of the estimated classical execution time on the MCU against the quantum hardware
execution time. The latter is estimated based on 20 ns for each single-qubit gate, 40 ns for each two-qubit
gate, and 600 ns for each measurement and reset. The classical run time consists of two parts: (1) For classical
instructions, the runtime estimated with the master frequency of the MCU CPU is 1 GHz and cycle counts
from our in-house CPU profiling tools; (2) quantum instructions are executed via expansion into RISC-V base
instructions for MMIO, and it takes up to 17 cycles for each MMIO communication between the MCU and
the IQE driver through the system bus. The runtime is scaled piece-wise to reflect different running time
scaling. The quantum execution time is marked separately with white hatches; note that the proportion
of the quantum execution time versus the total classical execution time is distorted owing to the scaling
distortion.

In deploying the Sandwich Decoder over the integrated multi-core CPU, the underlying inner
decoders are an in-house Union-Find implementation and a recent PyMatching v2 [20]. We make
several implementation-level improvements on the efficiency for our Union-Find decoder.

To benchmark the performance of our SDU, we apply the Sandwich Decoder to the Bell state
experiment; this goes a step further than the memory experiment as in Reference [34]. For sim-
plicity, we assume that the routing space between the two logical qubits is small compared to the
code distance d and use a single large window to cover the two-qubit measurement part in the
overall decoder graph (see Figure 11). All other windows are the same windows used in memory
experiments. In our simulation experiments, we input the description of the large window as well
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Fig. 11. Illustration of a division of the overall three-dimensional decoder graph of the Bell-state experiment
(Figure 6) into windows. Under the assumption of a small routing space, even though the center window is
large, its size is stillO (d )×O (d )×O (d ). Note that the center window covers more layers than other windows;
an alternative scheme (not depicted) is to divide the center window further so every window covers the same
number of layers, which gives rise to more complicated windows.

as the weight of each edge in that window to the CCU, which randomly generates error syndromes
before invoking the decoding module.

We use the benchmarking results on the development board, shown in Figure 12, to estimate
the decoding time when implementing our SDU on various RISC-V SoCs. With Union-Find and
PyMatching 2 as inner decoders, the implemented SDU can decode up to distances 13 and 31 on
SiFive P650 [32], T-head C910, or comparable alternatives [9] (16 cores at 2.5 GHz), or 67 and 57
with ET-SoC-1 [15] (1,088 cores at 1 GHz), all within just 1 microsecond for physical error rate
p = 0.0001. Our evaluation of PyMatching 2 shows that its performance is constrained by the
limited 1 GB memory available on the tested development board. We expect that PyMatching 2
could achieve even better results on a higher-end development board with a larger memory.

Besides the decoding throughput, another constraint for the decoder architecture is that the
large amount of syndrome information generated throughout the SCQC process must not saturate
the communication bandwidth. It is known that raw syndrome measurement results can quickly
become a bandwidth bottleneck [13], thus must be compressed. One approach is to record the
“detection events,” i.e., changes in a sequence of syndrome bits, rather than all the syndrome bits.
For a quantum memory experiment with a code distance d and a syndrome extraction cycle n,
each ancilla qubit needs to generate pdetect ·n log2 n bits, on average, assuming that each detection
event happens with a probability pdetect. Roughly, the bandwidth requirement would become 100
Mbps for pdetect = 0.02 and n = d = 33. This compression can be done on each digitizer separately
before transmission to the IQE driver. More advanced compression algorithms may achieve a better
compression rate but may require conjoined processing from different digitizers. Such an algorithm
can be placed in the IQE driver should there be a bottleneck in the MMIO bandwidth.

5 DISCUSSION AND OUTLOOK

We present a scalable design for the classical architecture of quantum computing. Our design
aims towards easy scaling with no significant overhead. We evaluate its scalability on two basic

ACM Transactions on Quantum Computing, Vol. 5, No. 1, Article 3. Publication date: December 2023.



3:20 F. Zhang et al.

Fig. 12. The average syndrome decoding throughput for the quantum memory experiment and the two-qubit
joint measurement in the Bell state experiment. Decoding throughput is defined as the average processing
time per single layer of syndrome on a single core with 1 GHz master frequency. We experimentally bench-
mark the total running time of both experiments under different code distances and multiple runs and deduce
the per-layer running time. For the ease of comparison, we set the step size as t + 1 = (d + 1)/2 and the
window size as 3(t + 1) for both experiments. For the quantum memory experiments, the red dashed lines
indicate the capability of the specific RISC-V SoCs, converted to the same scale as the experimental data.
The data points below a certain dashed line indicate the feasibility of running the corresponding task on the
corresponding SoC within 1 µs.

subroutines over a prominent fault-tolerant scheme and validate its practical feasibility with a
prototype implementation.

A natural next step is to implement the real system with quantum processors of a much larger
scale than that in our study. The current design is estimated to scale up easily over thousands of
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qubits. Such an estimation is based on the size of the allocated MMIO addresses, the picosecond
accuracy in the synchronization of the trigger signal across different electronics, and the physical
size of the electronics stacks. Although most of the limiting factors can be lifted through a more
careful design, it remains uncertain if unforeseen problems may arise with a larger-scale quantum
processor. A possible further scaling-up through modularization is to let each MCU control one or
a few logical components, such as a single logical qubit or a patch of the routing space, and let an
upper-level control unit issue logical instructions to these logical components while maintaining
synchronization.

In this study, we assume room-temperature devices for their wide adoption at the time of writ-
ing. However, our design, in principle, is not limited to such and may in particular work well for
cryogenic electronics, such as cryo-CMOS [8] or single-flux-quantum [28], as long as the com-
ponent functionalities can be implemented. Such demonstrations would be an interesting future
direction.

Another important direction is to demonstrate through more sophisticated tasks than our two
“toy-model” subroutines. Such experiments may lead to the discovery of currently unknown lim-
iting factors for classical architecture in SCQC.

Classical architecture is just half of the story, as numerous challenges remain to be addressed in
quantum architecture. Beyond the quantum processor’s scale, hurdles such as input/output (I/O)
management, interconnection, packaging, and heat and power dissipation must be overcome. Pre-
vious research in quantum architecture has often more focused on the feasibility of qubit control
than the potential demands of intensive classical computation. Conversely, studies on classical ar-
chitecture have primarily examined the viability of specific classical computation tasks such as
syndrome decoding, either in-fridge or out-of-fridge, under the bold assumption that high-fidelity
qubit control can be realistically achieved. A holistic evaluation of the FTQC workflow, encom-
passing both classical and quantum architectures, will aid in identifying potential bottlenecks and
determining the most effective steps to move forward.
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